INTERATIONAL CYANIDE MANAGEMENT INSTITUTE

Cyanide Code Compliance Audit
Gold Mining Operations

Summary Audit Report

AngloGold Ashanti
Kopanang Gold Plant Vaal River

5th – 9th & 26th – 30th March 2007
Location detail and description of operation:

Kopanang Gold Plant is situated in the North West Province approximately 24 km South East of Klerksdorp. The Gold Plant treats primary underground gold ore mined at the Tau Lekoa and Kopanang Shafts in a twin stream configuration. Capacity is filled up with the addition of payable grade waste rock.

The plant consists of conventional run-of-mine (ROM) milling, leaching, carbon in pulp (CIP) and electro-winning sections. In the first stage of comminution the ore is milled in a set of 6 parallel ROM semi-autogenous (SAG) mills. The milled pulp reports to a set of four thickeners for solid-liquid separation. The screened mill product gravitates to the four 60-m diameter thickeners with lime and flocculant being added to assist with settling. The reclaimed thickener overflow water is returned to the milling circuit.

After thickening, the pulp is pumped through a series of eight leach tanks (per stream) where the gold is dissolved with sodium cyanide. The fourth stage is the CIP section where the dissolved gold is adsorbed by activated carbon in the pulp. The carbon loaded...
with gold is sent through an elution column where the gold is stripped from the carbon by a caustic solution. Lastly, the loaded caustic solution is pumped to the electro-winning circuit where the gold is electroplated onto stainless steel cathodes. This electroplated concentrate is then washed from the cathodes and is delivered to the smelt house for gold bar production.

- **Elution**
 Three integral elution circuits exits. Loaded carbon is pumped out of the No. 1 adsorption vessel to the loaded carbon vibrator screens where the carbon is washed and then discharged into the loaded carbon measuring vessels. The slurry and water returns to the pulp stream. The loaded carbon is accumulated in the loaded carbon vessels and this is then transferred into the elution column. A caustic solution containing 2.3% NaOH at a temperature of 130°C is pumped through the carbon in the elution column. The pregnant solution (eluate) is cooled down in the flash tanks and then passes through to the electro-winning cells where the gold is removed from the solution onto the stainless steel cathodes. The barren solution (eluant) then returns to the elution column for reuse. The caustic solution is re-circulated continuously for the entire duration of the elution process of 18 hours. Steam for heating the eluant is supplied by four electrode boilers.

- **Electrowinning**
 The electro-winning section comprises eighteen Mintek-type cells. Each cell has six stainless steel cathodes and seven anodes. The dissolved gold in the eluate is electro-won onto the stainless steel in the cathode baskets. The spent electrolyte then flows through to the eluant tank to be re-circulated to the elution column. The cathode gold sludge is smelted for bullion bar production.

- **Carbon treatment**
 Carbon is de-watered using vibrator screens and fed into the rotating kilns where the volatiles and organic contaminants are driven off and the carbon reactivated by bringing the carbon temperature up to 750-800°C. The regenerated carbon is acid treated with a 5% hydrochloric acid (HCl) solution for removal of inorganic contaminants. After acid treating the carbon is returned to the CIP section.

Residue from the plant is pumped to the Tailings Storage Facilities situated at the Mispah slimes dam and No 4 compartment West TSF. The Gold plant utilizes the conventional cyanide leach / carbon in pulp technology to extract gold. The final product is gold bullion bars, shipped to the refinery for refining and sale.
Auditor’s Finding

This operation is

☐ in full compliance

X in substantial compliance *(see below)

☐ not in compliance

with the International Cyanide Management Code.

* The Corrective Action Plan to bring an operation in substantial compliance into full compliance must be enclosed with this Summary Audit Report. The plan must be fully implemented within one year of the date of this audit.

Audit Company: Eagle Environmental

Audit Team Leader: Arend Hoogervorst

E-mail: arend@eagleenv.co.za

Names and Signatures of Other Auditors:

Name: Dawid M. L Viljoen Signature __________________________ Date: 13/06/07

Date(s) of Audit: 5th – 9th & 26th – 30th March 2007

I attest that I meet the criteria for knowledge, experience and conflict of interest for Code Verification Audit Team Leader, established by the International Cyanide Management Institute and that all members of the audit team meet the applicable criteria established by the International Cyanide Management Institute for Code Verification Auditors.

I attest that this Summary Audit Report accurately describes the findings of the verification audit. I further attest that the verification audit was conducted in a professional manner in accordance with the International Cyanide Management Code Verification Protocol for Gold Mine Operations and using standard and accepted practices for health, safety and environmental audits.

Facility: AngloGold Ashanti Kopanang Plant Vaal River South Signature of Lead Auditor ______________ Date 22/6/07

Certified/notarized:–

Kopanang Gold Plant Vaal Signature of Lead Auditor ______________ 18th June 2007
Auditor's Findings

1. PRODUCTION: Encourage responsible cyanide manufacturing by purchasing from manufacturers who operate in a safe and environmentally protective manner.

Standard of Practice 1.1: Purchase cyanide from manufacturers employing appropriate practices and procedures to limit exposure of their workforce to cyanide, and to prevent releases of cyanide to the environment.

☒ in full compliance with

The operation is ☒ X in substantial compliance with Standard of Practice 1.1

☒ not in compliance with

Basis for this Finding/Deficiencies Identified:
The plant's cyanide manufacturer, Sasol Polymers, is a ICMI Code Signatory and has undergone a compliance audit which resulted in a substantial compliance finding. This prevents the Kopanang Gold Plant from achieving full compliance with this Standard of Practice. The Sasol Corrective Action Plan is expected to be complied with, and thus enabling full ICMI compliance, by the end of the third quarter of 2007. The supply contract stipulates that the producer must be a signatory to the ICMI and must be ICMI compliant.

2. TRANSPORTATION: Protect communities and the environment during cyanide transport.

Standard of Practice 2.1: Establish clear lines of responsibility for safety, security, release prevention, training and emergency response in written agreements with producers, distributors and transporters.

☒ in full compliance with

The operation is ☐ ☒ X in substantial compliance with Standard of Practice 2.1

☒ not in compliance with

Basis for this Finding/Deficiencies Identified:
The supply and transport contract stipulates that the transporter must be a signatory to the ICMI and must be ICMI Code compliant. The transporter, Sasol Infrachem SILog, is a
ICMI signatory and has been audited by an independent third party auditor and was found to be ICMI transportation compliant on 8th March 2007. Clearly identified lines of communication and responsibility exist between the producer, transporter and operation and evidence of training, full integrated drills, and liaison was sighted.

Standard of Practice 2.2: Require that cyanide transporters implement appropriate emergency response plans and capabilities and employ adequate measures for cyanide management.

X in full compliance with

The operation is

☐ in substantial compliance with **Standard of Practice 2.2**

☐ not in compliance with

Basis for this Finding/Deficiencies Identified:
The supply and transport contract stipulates that the transporter must be a signatory to the ICMI and must be ICMI Code compliant. The transporter, Sasol Infrachem SiLog, is an ICMI signatory and has been audited by an independent third party auditor and was found to be ICMI transportation complaint on 8th March 2007. Emergency response plans were sighted along with evidence of adequate capabilities training and resources.

3. **HANDLING AND STORAGE:** Protect workers and the environment during cyanide handling and storage.

Standard of Practice 3.1: Design and construct unloading, storage and mixing facilities consistent with sound, accepted engineering practices, quality control/quality assurance procedures, spill prevention and spill containment measures.

X in full compliance with

The operation is

☐ in substantial compliance with **Standard of Practice 3.1**

☐ not in compliance with

Basis for this Finding/Deficiencies Identified:
Original drawings and P&IDs were examined, in addition to civil engineering drawings covering the cyanide storage extension foundation and bund walls. Furthermore, subsequent Professional Engineer's inspections covering structural and seismic integrity confirmed that the plant had been built to sound engineering design and quality principles, in keeping with the requirements of sound management, storage and use of cyanide. The site is concreted in all areas where cyanide spills could occur and secondary
containment protects from any potential escape of liquids. No solid cyanide is used and thus the focus is on management of liquid cyanide.

Standard of Practice 3.2: Operate unloading, storage and mixing facilities using inspections, preventive maintenance and contingency plans to prevent or contain releases and control and respond to worker exposures.

- X in full compliance with

The operation is

- □ in substantial compliance with *Standard of Practice 3.2*
- □ not in compliance with

Basis for this Finding/Deficiencies Identified:
The site only uses liquid cyanide which is delivered by bulk road tanker and stored in bulk storage tanks. No mixing or use of solid cyanide occurs on site. Detailed procedures are in place covering unloading, storage, inspections and maintenance of liquid cyanide. The procedures cover all normal and abnormal circumstances and are supported by HAZOPs which have been undertaken on both activities and the procedures themselves. Off-loading checklists were sighted and interviews conducted which confirmed cyanide awareness and competency. Regular documented inspections are undertaken by shift staff and these are supported by regular legal inspections by safety officers and management. All reagent cyanide facilities are covered in the CMMIS (Computer Maintenance Management Information) computerized preventative maintenance system, with maintenance frequencies having been determined by Failure Mode Evaluation Critical Analysis (FMECA). PPE requirements are included in procedures and a Buddy system is in operation.

4. **OPERATIONS: Manage cyanide process solutions and waste streams to protect human health and the environment.**

Standard of Practice 4.1: Implement management and operating systems designed to protect human health and the environment utilizing contingency planning and inspection and preventive maintenance procedures,

- X in full compliance with

The operation is

- □ in substantial compliance with *Standard of Practice 4.1*
- □ not in compliance with
Summarize the basis for this Finding/Deficiencies Identified:
The site has 51 procedures specifically dealing with cyanide, supported by a further 25 general emergency procedures and an integrated management system which complies with both ISO 14001 and OSHAS 18001 requirements. Maintenance is controlled by a CMMIS computerized system and an IRMS Action Manager system oversees the monitoring of routine actions and corrective actions. These systems are integrated seamlessly between site operations and centralised TSF operations. Contingency and emergency procedures are in place for both plant and TSF and cover all identified HAZOP-identified scenarios. Power failure will result in emergency power supplies for critical areas such as lighting, safety showers, emergency monitoring and controls and the PLC, but the plant is designed for the containment within plant boundaries in such an instance. Routine inspections are carried out effectively and good communication was found to be in place between the site and central facilities and service groups. (Environmental management, water management, risk management, and TSF management.) A change management procedure is in place and is currently being upgraded to improve effectiveness and sensitivity.

Standard of Practice 4.2: Introduce management and operating systems to minimize cyanide use, thereby limiting concentrations of cyanide in mill tailings.

X in full compliance with

The operation is

☐ in substantial compliance with Standard of Practice 4.2

☐ not in compliance with

☐ not subject to

Basis for this Finding/Deficiencies Identified:
Diagnostics leach tests and appraisals have been carried out by external accredited laboratories and quarterly tests continue to be undertake to optimize operations. Automated equipment controls cyanide addition and monitoring (TAC 2000 auto cyanide titrator) and this is supported by manual titration. All changes in set points must be authorized by the plant manager.

Standard of Practice 4.3: Implement a comprehensive water management program to protect against unintentional releases.

Kopanang Gold Plant Vaal Signature of Lead Auditor 18th June 2007

Page 8 of 19
X in full compliance with

The operation is

- in substantial compliance with Standard of Practice 4.3
- not in compliance with

Basis for this Finding/Deficiencies Identified:
Water balances is in place for both the site and the Vaal River central water management systems and the TSFs used by the site. The site has been designed so that the drainage gravitates to the containment dams on site. An interlinked system to balance water usage for all the sites linked to the central system was reviewed and interviews with the Vaal River Water Manager, TSF Manager and Kopanang Cyanide Campion confirmed that effective control and communication on water matters was in place. The site uses ore inputs, water usage, rainfall and evaporation in water usage and loss calculations. Use is made of clean/dirty water separation systems to minimise contamination and containment on site is effective.

Standard of Practice 4.4: Implement measures to protect birds, other wildlife and livestock from adverse effects of cyanide process solutions.

X in full compliance with

The operation is

- in substantial compliance with Standard of Practice 4.4
- not in compliance with

Summarize the basis for this Finding/Deficiencies Identified:
The site experiences WAD cyanide levels of significantly below 50ppm under normal operating conditions. The management approach is to control cyanide levels at plant level and prevent releases to the TSFs. Effective communications and management systems are in place to monitor normal and abnormal events to proactively manage eventualities. The Vaal River TSF has experienced no WAD cyanide levels above 50ppm since the signing of the ICMI Code. MINTEK studies and analyses were sighted which confirm this. TSF staff have been trained in bird identification and behaviour and proactively monitor activities on the TSFs.

Standard of Practice 4.5: Implement measures to protect fish and wildlife from direct and indirect discharges of cyanide process solutions to surface water.

X in full compliance with

The operation is

- in substantial compliance with Standard of Practice 4.5
not in compliance with

Basis for this Finding/Deficiencies Identified:
The site has no direct or indirect discharges to surface water.

Standard of Practice 4.6: Implement measures designed to manage seepage from cyanide facilities to protect the beneficial uses of ground water.

X in full compliance with

The operation is

not in compliance with

Basis for this Finding/Deficiencies Identified:
The site has no potential for seepage as its design includes hard surfaces for all areas, clean/dirty water separation, stormwater impoundments and cutoff trenches. The Vaal River TSF has well fields installed to dewater the riverbank and long term groundwater sampling by MINTEK have indicated no detectable, or “at limits of detection”, cyanide. All borehole water from the dewatering wells is returned to the various sites and plants.

Practice 4.7: Provide spill prevention or containment measures for process tanks and pipelines.

X in full compliance with

The operation is

not in compliance with

Basis for this Finding/Deficiencies Identified:
The plant design includes effective bunding for all identified and significant areas, supported by drainage to concrete-lined, containment dams. Bunding capacity for reagent strength areas meets all Code requirements. However, other secondary containments comply by gravity overflow, over concrete surfaces, to emergency concrete-lined, containment dams. Pipelines and tanks are monitored and thickness tested, based upon risk assessments and this is monitored and managed through the CMMIS maintenance system. Pipes crossing rivers and other sensitive areas are doubled-lined and secondary containment paddocks are in place. On site, pipelines are over bunded areas or contained in secondary containment launders. Inspection routines are in place (“Pipeline patrols”) to check tanks and pipelines for leaks and spills on a regular basis. Materials compatibility for cyanide and high pH conditions is managed through design control.
specifications, inspections and Plant Engineer approvals, and controlled procurement procedures.

Standard of Practice 4.8: Implement quality control/quality assurance procedures to confirm that cyanide facilities are constructed according to accepted engineering standards and specifications.

- X in full compliance with

- □ in substantial compliance with **Standard of Practice 4.8**
- □ not in compliance with

Basis for this Finding/Deficiencies Identified:
Quality controls mechanisms and checks are in place. These have been reinforced by Professional Engineers inspections (including legal inspections, civil engineering, geotechnical and seismic checks), where specific documentation was not available, to confirm the site operates as per design criteria and specifications. Quality Assurance documentation for the TSFs and the site were checked. Annual legal inspections against a legal Code of Practice and internal Technical Specifications are undertaken by a professional Geotechnical Engineer and these were checked.

Standard of Practice 4.9: Implement monitoring programs to evaluate the effects of cyanide use on wildlife, surface and ground water quality.

- X in full compliance with

- □ in substantial compliance with **Standard of Practice 4.9**
- □ not in compliance with

Basis for this Finding/Deficiencies Identified:
Monitoring programmes are in place to sample both surface and groundwater for cyanide. These are prioritised through broad based studies conducted by MINTEK to ensure that the most appropriate areas are checked. Wildlife observations are correlated with studies conducted by the University of the North West and bird identification training programmes for monitors and inspectors have been introduced to add value to mortality observations. Monitoring and inspections are governed by appropriate procedures and guidelines.

5. **DECOMMISSIONING:** Protect communities and the environment from cyanide through development and implementation of decommissioning plans for cyanide facilities

Kopanang Gold Plant Vaal

Signature of Lead Auditor

18th June 2007
Standard of Practice 5.1: Plan and implement procedures for effective decommissioning of cyanide facilities to protect human health, wildlife and livestock.

X in full compliance with

The operation is □ in substantial compliance with Standard of Practice 5.1

□ not in compliance with

Summarize the basis for this Finding/Deficiencies Identified:
The site is covered by a corporate wide Closure Plan, dictated by legislation, and updated regularly and costs reviewed annually. Specific procedures are in place covering decontamination and removal of cyanide contaminated or redundant equipment and wastes. Planning and costing is supported by actual cyanide facilities’ decommissioning experience.

Standard of Practice 5.2: Establish an assurance mechanism capable of fully funding cyanide related decommissioning activities.

X in full compliance with

The operation is □ in substantial compliance with Standard of Practice 5.2

□ not in compliance with

Basis for this Finding/Deficiencies Identified:
Plans and finding of cyanide decommissioning activities are a requirement of the Minerals and Petroleum Resources Development Act and these plans and the latest cost estimates and details of financial provisions, supplemented by internal Cyanide Management requirements, were sighted.

6. WORKER SAFETY: Protect workers’ health and safety from exposure to cyanide

Standard of Practice 6.1: Identify potential cyanide exposure scenarios and take measures as necessary to eliminate, reduce or control them.

X in full compliance with

The operation is □ in substantial compliance with Standard of Practice 6.1

□ not in compliance with
Basis for this Finding/Deficiencies Identified:
Risk assessments and procedural HAZOPs are in place and regularly revised or undertaken for new or changed circumstances. Procedures were developed from HAZOPS and risk assessments and reflect responses to normal and abnormal conditions. Procedures were extensively checked through examination and interview. Strong controls and procedures are in place governing effective PPE. Recently introduced, expanded change management procedures broaden the base for identification and control. Checks and balances are in place through worker involvement in HAZOPs and through consultations in Health & Safety Committee meetings and through Green Area meetings.

Standard of Practice 6.2: Operate and monitor cyanide facilities to protect worker health and safety and periodically evaluate the effectiveness of health and safety measures.

X in full compliance with

The operation is
☐ in substantial compliance with Standard of Practice 6.2
☐ not in compliance with

Basis for this Finding/Deficiencies Identified:
Personal monitoring devices are used to check cyanide exposure levels and are prescribed by procedure in many routine and non-routine activities. Polytron fixed monitoring devices are in place, appropriately alarmed, and linked to the central control SCADA, as are pH probes. Testing and calibration of equipment exceeds manufacturer’s requirements and is undertaken six monthly, as opposed to twelve monthly manufacturer’s specifications. Site inspections revealed well positioned and clear warning signage throughout the plant covering area access, piping and tankage and safe working practices. Safety showers, Mandown alarms and cyanide first aid facilities are located to optimise accessibility in emergencies. Change management procedures used at the plant and the TSF ensure that process and operational changes are checked for impact upon worker health and safety. On going inspections and checks are also used to monitor and check facilities and emergency response equipment functioning. Employee interviews were used to check awareness and sensitivity to health and safety measures and verify effectiveness.

Standard of Practice 6.3: Develop and implement emergency response plans and procedures to respond to worker exposure to cyanide.

X in full compliance with

The operation is
☐ in substantial compliance with Standard of Practice 6.3

Kopanang Gold Plant Vaal Signature of Lead Auditor 18th June 2007
Emergency response plans and equipment are in place and equipment availability, and inspections records were thoroughly checked. Mock emergency drills are held in rotation with neighboring plants to enable effective checking of full cycle (i.e. plant, ambulance, hospital) response, as well as on a more frequent shiftly basis, and reports on these drills were sighted. Post mortem discussions are held after exercises to draw out learning points for improvement and training staff are also involved to provide additional analysis. Fridges were in place to keep the antidotes and response kits at optimum temperature and expiry dates were marked and supported by a checking system to ensure appropriate and timeous replacement with expiry timeframes. First aid equipment is readily available and checked regularly. Cyanide First Aid training is provided to identified employees and refresher training provided and supported by on-going competency assessment by central qualified training officers.

7. EMERGENCY RESPONSE Protect communities and the environment through the development of emergency response strategies and capabilities.

Standard of Practice 7.1: Prepare detailed emergency response plans for potential cyanide releases.

X in full compliance with

The operation is

☐ in substantial compliance with Standard of Practice 7.1

☐ not in compliance with

Basis for this Finding/Deficiencies Identified:
The Plant has used a HAZOP study to developed site specific emergency scenarios and responses and check site specific appropriateness. The response plan combines procedural responses and emergency provisions to deal with the various scenarios.

Standard of Practice 7.2: Involve site personnel and stakeholders in the planning process.

X in full compliance with

The operation is

☐ in substantial compliance with Standard of Practice 7.2
not in compliance with

Basis for this Finding/Deficiencies Identified:
Representatives of the workforce were involved in the HAZOP Study to develop the emergency scenarios and response in the emergency response plan and procedures. Follow up discussions with participants and the workforce, immediately after drills are held to draw out learning points and areas of improvement for different scenarios. Meetings have been held with the local business community and presentations have been given to schools regarding the dangers of cyanide and TSFs. There is close, on-going liaison with the cyanide producer and transporter (Sasol) and external agencies on emergency response, drills, and learning points from drills. Workshops and discussions are held on an on-going basis.

Standard of Practice 7.3: Designate appropriate personnel and commit necessary equipment and resources for emergency response.

The operation is □ in substantial compliance with Standard of Practice 7.3 □ not in compliance with

Basis for this Finding/Deficiencies Identified:
The Emergency Response Plan details roles and responsibilities for the various emergency scenarios. On-going liaison is undertaken with outside responders such as hospitals, the cyanide supplier/transporter and local emergency services. Appropriate general and specialised training at varying levels is provided for response teams and this is reinforced regularly by refresher training and competency testing. Training is provided by the AGA centralized training centre, which is a certified mine training facility, and by use of specialised, certified, HAZCHEM training academies. This was further verified and tested in interviews. The Emergency Response Plan cross-references appropriate procedures which guide availability and use of resources and appropriate response. The Plan includes extensive contact references (telephone, cell phone, etc) of resources for the various scenarios. Emergency equipment, such as cyanide first aid equipment, cyanide PPE and the emergency response trailer, is regularly and formally checked.

Standard of Practice 7.4: Develop procedures for internal and external emergency notification and reporting.

The operation is □ in substantial compliance with Standard of Practice 7.4
Basis for this Finding/Deficiencies Identified:
Media communication is done centrally via a formal procedure. The Emergency Response Plan includes cross references to procedures for appropriate emergency notification and reporting and the call out procedure and contact information lists which are updated regularly. Current updated lists of contact were sighted as were contact details for neighbours.

Standard of Practice 7.5: Incorporate into response plans and remediation measures monitoring elements that account for the additional hazards of using cyanide treatment chemicals.

X in full compliance with

The operation is

☐ in substantial compliance with Standard of Practice 7.5

☐ not in compliance with

Basis for this Finding/Deficiencies Identified:
The Response Plans cross reference to detailed and specialised procedures which cover clean up and remediation relating to pipeline failures and spills, as appropriate to the site specific identified scenarios. There are also cross references to the centralized environmental procedures which form part of the Environmental Management System.

Standard of Practice 7.6: Periodically evaluate response procedures and capabilities and revise them as needed.

X in full compliance with

The operation is

☐ in substantial compliance with Standard of Practice 7.6

☐ not in compliance with

Basis for this Finding/Deficiencies Identified:
Regular drills are undertaken and these form the basis for update and improvement, where appropriate. Procedures require that where drills or events identify deviations or variations, appropriate plans and procedures will be reviewed.

Kopanang Gold Plant Vaal Signature of Lead Auditor 18th June 2007

Page 16 of 19
8. TRAINING: Train workers and emergency response personnel to manage cyanide in a safe and environmentally protective manner.

Standard of Practice 8.1: Train workers to understand the hazards associated with cyanide use.

X in full compliance with

The operation is

☐ in substantial compliance with **Standard of Practice 8.1**

☐ not in compliance with

Basis for this Finding/Deficiencies Identified:
Detailed checks were made of the centralized cyanide training and refresher programs. These were cross-checked with plant records and randomly selected employees were checked on understanding in interviews. Checks were made on basic cyanide training, and advanced cyanide training. Training records are held centrally and there is close liaison between the Central Training Department and the site on refresher training and verification of competence through on-going, on-the-job assessments by training assessors.

Standard of Practice 8.2: Train appropriate personnel to operate the facility according to systems and procedures that protect human health, the community and the environment.

X in full compliance with

The operation is

☐ in substantial compliance with **Standard of Practice 8.2**

☐ not in compliance with

Basis for this Finding/Deficiencies Identified:
Site Training is conducted by the Training Department in accordance with the South African National Unit Standard Met-G136 LG “Handle Liquid Cyanide Safely in a Metallurgical Plant” and the AngloGold Ashanti Cyanide Guidelines. Formal assessments of performance are conducted by assessors to check competency and understanding using PDAs (Personal Digital Assistants). Training for engineering maintenance staff includes cyanide training and specialised training is provided for Cyanide Off-loaders.
The operation is

☐ in substantial compliance with Standard of Practice 8.3

☐ not in compliance with

Summarize the basis for this Finding/Deficiencies Identified:
All employees receive basic cyanide training which includes raising the alarm and protecting themselves. The Emergency Response Team receives advanced cyanide training which includes incident command and confined space rescue. Periodic mock drills are undertaken and training personnel attend these drills and formally evaluate response and performance. Training records were checked to confirm attendance and successful completion.

Standard of Practice 9.1: Provide stakeholders the opportunity to communicate issues of concern.

X in full compliance with

The operation is

☐ in substantial compliance with Standard of Practice 9.1

☐ not in compliance with

Basis for this Finding/Deficiencies Identified:
Evidence of meetings held with the local communities where cyanide was discussed specifically was sighted. The communities were given the opportunity to raise issues and ask questions. Presentation material and meeting minutes were sighted.

Standard of Practice 9.2: Initiate dialogue describing cyanide management procedures and responsively address identified concerns.

X in full compliance with

The operation is

☐ in substantial compliance with Standard of Practice 9.2

☐ not in compliance with

Kopanang Gold Plant Vaal Signature of Lead Auditor 18th June 2007
Page 18 of 19
SUMMARY AUDIT REPORT

AngloGold Ashanti Kopanang Gold Plant Vaal River South
26th – 30th March 2007

Basis for this Finding/Deficiencies Identified:

AngloGold Ashanti Central Services, on behalf of the plant, initiated discussions with local emergency services, fire and rescue on hazardous chemicals, transportation procedures, risk assessments and cyanide management. This is also done in liaison with discussions held by the cyanide producer and transporter, Sasol, with emergency services.

Standard of Practice 9.3: Make appropriate operational and environmental information regarding cyanide available to stakeholders.

X in full compliance with

The operation is

☐ in substantial compliance with **Standard of Practice 9.3**

☐ not in compliance with

Basis for this Finding/Deficiencies Identified:

Various newsletters, articles, posers and placards covering cyanide management, dangers of Tailings Storage Facilities, pipelines, and information on the ICMI which have been made available to the public and specific interest groups were sighted. All information on releases and exposures is reported to the regulator who then releases the information via regular newsletters and reports to stakeholders. The information is then in the public domain and can be requested from the regulator by interested parties. Should releases and exposures occur, they will be reported on the company’s website. Information is also distributed to the Health and Safety Committee at which the employees are represented.

Kopanang Gold Plant Vaal
Signature of Lead Auditor
18th June 2007

Page 19 of 19