Table of Contents

1.0 SUMMARY AUDIT REPORT FOR GOLD MINING OPERATIONS ... 1

2.0 LOCATION DETAIL AND DESCRIPTION OF OPERATION ... 1
 2.1 Cyanide Production Facility Location ... 1
 2.2 Background ... 1

SUMMARY AUDIT REPORT .. 2
 Auditors Findings ... 2
 Name of Other Auditors .. 2
 Dates of Audit .. 2

PRINCIPLE 1 – OPERATIONS ... 3

PRINCIPLE 2 – WORKER SAFETY ... 6

PRINCIPLE 3 – MONITORING ... 8

PRINCIPLE 4 – TRAINING ... 9

PRINCIPLE 5 – EMERGENCY RESPONSE ... 11
1.0 SUMMARY AUDIT REPORT FOR GOLD MINING OPERATIONS

Name of Cyanide Production Facility: The Lučební závody Draslovka a.s. Kolin Facility
Name of Cyanide Production Facility Owner: Lučební závody Draslovka a.s.
Name of Cyanide Production Facility Operator: Lučební závody Draslovka a.s.
Name of Responsible Manager: Mrs. Jarmila Málková, Head of System Management Department, Lučební závody Draslovka a.s.
Address: Havlíčkova 605
State/Province: 280 99 Kolin IV
Country: Středočeský kraj
Telephone: +420 321 355 251
E-Mail: jarmila.malkova@draslovka.cz

2.0 LOCATION DETAIL AND DESCRIPTION OF OPERATION

2.1 Cyanide Production Facility Location

The Lučební závody Draslovka a.s. Kolin facility is located on the south east side of the town of Kolin (which is located around 50 km east of Prague). The site is located in a mainly industrial/commercial area of Kolin although some residential land use is located adjacent to part of the facility. A river and rail line are located at the northern boundary of the site and commercial land use to the west (under re-development) and east. To the south lies a main road into Kolin and a small number of residential properties.

2.2 Background

Activities at the site commenced around 1906 and included the production of cyanides. The factory was destroyed during an air raid in April 1945 and production was restarted in 1947, and then nationalised in 1949. In 1992, Lučební závody Kolin a.s., gained independence and in 1994 Lučební závody Draslovka a.s. Kolin began operations as an independent company, when the original company Lučební závody Kolin a.s was split. In 1998, new investors entered the company as majority shareholders.

The company currently manufacture a range of products at the facility including hydrogen cyanide, sodium cyanide, potassium cyanide and other cyanide derivatives. They also manufacture chlorochlorinchloride, diphénylguanidine, chelates and specialty chemicals.

The site has around 240 employees and has gained accreditation to ISO 9001:2008 and has a responsible care certification (September 2008). It now produces around 11,500 tonnes per annum of cyanide products.

Cyanide is manufactured at the facility using the Andrussov process. In this process, natural gas (methane), ammonia and oxygen are reacted over a platinum/rhodium catalyst to form hydrogen cyanide (HCN) gas. The HCN gas is then absorbed into caustic soda to form a solution of sodium cyanide (or potassium hydroxide to form potassium salts). This cyanide liquor can then be concentrated, crystallised, dried and compacted into solid sodium cyanide.

Cyanide manufactured at the facility is used in gold mining operations within Europe.
SUMMARY AUDIT REPORT
Auditors Findings

☑ in full compliance with

Lučební závody Draslovka a.s. is: ☐ in substantial compliance with
☐ not in compliance with

The International Cyanide Management Code

Audit Company: Golder Associates
Audit Team Leader: Ed Perry, Lead Auditor
Email: eperry@golder.com

Name of Other Auditors
Dale Haigh, Auditor and Production Technical Specialist

Dates of Audit
The Certification Production Audit was undertaken over 5 days, between 4 October 2010 and 8 October 2010.

I attest that I meet the criteria for knowledge, experience and conflict of interest for Code Verification Audit Team Leader, established by the International Cyanide Management Institute and that all members of the audit team meet the applicable criteria established by the International Cyanide Management Institute for Code Verification Auditors.

I attest that this Summary Audit Report accurately describes the findings of the verification audit. I further attest that the verification audit was conducted in a professional manner in accordance with the International Cyanide Management Code Verification Protocol for Cyanide Production and using standard and accepted practices for health, safety and environmental audits.

Lučební závody Draslovka a.s.
Name of Facility

Signature of Lead Auditor

23 March 2011
Date

March 2011
Report No. 105141500099.500/A.0
PRINCIPLE 1 – OPERATIONS
Design, Construct and Operated Cyanide Production Facilities to Prevent Release of Cyanide

Operations Practice 1.1: Design and construct cyanide production facilities consistent with sound, accepted engineering practices and quality control/quality assurance procedures

☑ in full compliance with
☐ in substantial compliance with
☐ not in compliance with

Summarise the basis for this Finding/Deficiencies Identified:

The Lučební závody Draslovka a.s. Kolin (Draslovka) facility is in full compliance with the Production Practice 1.1 requiring that an operation design and construct cyanide production facilities consistent with sound accepted engineering practices and quality control/assurance procedures.

Quality control and quality assurance practices adopted during the gaining of the "permission to use" permit have continued and have been continually assessed during the annual integrated inspections by the local authorities. Specific plant equipment is also required to have annual certification by authorised external engineers. In addition, upgrades and modification to the plant in 2007 required the same certification by authorised external engineers. The plant also has to operate in accordance with the Integrated Pollution Prevention and Control (IPPC) permit.

Materials used within the plant are predominately constructed of stainless steel (Czech grades Tr 11, 17 and 17248) which are compatible to the activities being performed. Equipment is inspected formally on a quarterly basis by the plant manager and annual maintenance checks are performed by the maintenance department during annual shut down periods.

There is overfill protection for the storage tanks includes level indicators and high level alarms fitted to all reaction vessels and storage tanks with the levels being observed in real time by plant operators within the control room.

The plant also has automatic shut downs linked to material volumes, production weights, temperature overload and storage tank overfill. The entire cyanide process plant is contained within a 1.2 m reinforced concrete bund. Wet areas also have a drainage system located within the concrete surface. The concrete surface within the dry product storage area is coated with an epoxy resin. Outside, the tank farm containment bund is constructed with concrete (1.2 m in thickness) and surfaced with basalt tiles. Pipeline carrying cyanide is mainly located within the contained plant or tank farm. A small length of pipeline (< 5 m in length) that lies outside of these areas is double lined with and absorption media between the two pipes. This pipeline is also on a 1.5% gradient that falls back into the storage tank.
Operations Practice 1.2: Develop and implement plans and procedures to operate cyanide production facilities in a manner that prevents accidental releases.

☐ in full compliance with
☐ in substantial compliance with
☐ not in compliance with

Operations Practice 1.2

Summarise the basis for this Finding/Deficiencies Identified:

The Draslovka facility is in full compliance with production practice 1.2 requiring an operation develop and implement plans and procedures to operate cyanide production facilities in a manner that prevents accidental releases.

The Draslovka facility has an integrated management system comprising technological procedures (which detail how the cyanide plant is operated) and organisational standards for specific activities that cover standard, non-standard and abnormal situations. This integrated system provides a comprehensive range of procedures, instruction, checklists and information that support effective management of the plant and that prevents accidental releases. The site has also gained a usage permit and an IPPC permit from the local authority.

The system includes contingencies for internal emergency, the roles and responsibilities of internal emergency services (which include a 21 strong team of Central Fire Fighting Unit (CFFU), a water management emergency plan and a gas alarm system. The system carries out drills on these emergency plans.

There is a comprehensive system related to preventative maintenance that is managed by the maintenance team, and who also manage the calibration system for process controls and other items. Calibration is completed by certified suppliers or by trained internal staff.

Accidental release of contaminated water is managed by controlled release of waste water after treatment (using measurement prior to release) and through constant monitoring of the waste water discharge and use of a stop valve if required. Gaseous emissions are vented to the flare. Waste solid cyanide products are converted to aqueous and then treated within the waste water treatment system. Solids contaminated with cyanide are managed through the waste management system which includes segregated storage in a covered area and transport and treatment by an appropriately licensed contractor (SITA C.Z.).

Cyanide products are stored in ventilated areas within the plant or warehouse. Draslovka has a change management procedure, stores its cyanide in a secure area and in a manner that minimises the potential for contact with water, and has procedures to ensure appropriate packaging.

The transport of cyanide products is controlled through the use of following accepted (International Carriage of Dangerous Goods by Road) guidelines (adopted within their standard procedures), and through the training of staff and use of a certified advisor.
Operations Practice 1.3: Inspect cyanide production facilities to ensure their integrity and prevent accidental releases.

☑ in full compliance with
☐ in substantial compliance with
☐ not in compliance with

Operations Practice 1.3

Summarise the basis for this Finding/Deficiencies Identified:

The Draslovka facility is in full compliance with the requirements of Production Practice 1.3 of the Code requiring inspection of cyanide production facilities to ensure their integrity and to prevent accidental releases.

Routine inspections of the cyanide plant (including plant, storage, containment systems, integrity and corrosion) are performed formally on a quarterly basis by the plant manager. These inspections are recorded.

Annual certified inspections (as required by statutory regulations) are performed on specific equipment and the certification is recorded and records held by the maintenance department. The local authority review whether these certifications have been performed during their annual integrated inspections.

Informal inspections of the plant are performed during operation on a day to day basis. Issues identified are reported to the plant manager and where required a request is made to the maintenance department for repair through the standard operating procedure.

Repairs or upgrades identified during the inspections are performed by the maintenance department (with external support where required).

The site also has a preventative maintenance plan which it implements and this usually includes shut down and maintenance of the cyanide plant for two weeks every year.
PRINCIPLE 2 – WORKER SAFETY
Protect Workers’ Health and Safety from Exposure to Cyanide

Worker Safety Practice 2.1: Develop and implement procedures to protect plant personnel from exposure to cyanide.

☑ In full compliance with

☐ in substantial compliance with ☐ not in compliance with

Worker Safety Practice 2.1

Summarise the basis for this Finding/Deficiencies Identified:

The Draslovka facility is in full compliance with production practice 2.1 requiring an operation develop and implement procedures to plant personnel from exposure to cyanide.

The Draslovka facility has developed a range of procedures that help prevent plant personnel from exposure to cyanide. These included technical documentation detailing cyanide plant operating methodologies and organisation regulations which cover procedures.

This integrated system (which includes technical documentation detailing cyanide plant operating methodologies and organisation regulations) provides a comprehensive range of procedures, instruction, checklists and information that support effective management of the plant and that prevents plant personnel exposure to cyanide. The system requires effective control of the plant to prevent emissions and the planned preventative maintenance of equipment. Any revisions to procedures are reviewed by a committee that include the health and safety manager. Once a revised draft procedure is developed this is then released to all plant personnel so that they can comment on the plans before they are finalised.

The facility also has a health care system for its employees and this includes a pre-work health check (which assessed fitness for work) and then annual assessment of their health against specific tests defined by their specific activities.

The plant has constant cyanide monitoring that includes alarm levels and this system is manned 24 hours per day. For specific activities by contractors, the maintenance team and the Central Fire Fighting Unit (CFFU), additional hydrogen cyanide monitoring is performed during the activity they undertake. All monitoring instruments are calibrated six monthly and are maintained by certified suppliers or contractors.

Locations where cyanide exposure may occur has been identified and PPE is required to be worn in these areas. Work clothing is either provided to laundry (basket) at the end of the day or is disposed of via an appropriate licensed waste disposal route.

The facility operates a buddy system with communication by phone or 2-way radio.

Smoking, eating and drinking, and having open flames in areas where there is the potential for cyanide contamination are prohibited except for approved safe areas.
Worker Safety Practice 2.2: Develop and implement plans and procedures for rapid and effective response to cyanide exposure.

☑ in full compliance with

☐ in substantial compliance with ☐ not in compliance with

Summarise the basis for this Finding/Deficiencies Identified:
The Draslovka facility is in full compliance with production practice 2.2 requiring an operation develop and implement plans and procedures for rapid and effective response to cyanide exposure.

Procedures developed and implemented by the facility include:

- Internal Emergency Response (OS 22-02);
- Emergency and Extraordinary Activities (OS 24-02);
- Emergency Services (OS 24-05); and
- Waste Emergency Plan (OS 25-03).

There is also an external emergency plan developed by the local Authority at Kolin.

Showers, low pressure eye wash, non acidic fire extinguishers are located throughout the cyanide plant and storage areas. Water oxygen, resuscitators, cyanide antidote, first aid equipment and communication systems are all available and are tested and maintained.

MSDSs are available in Czech, and a wide range of other languages, on the facilities intranet system with back-up in paper form within the plant and at the CFFU control room.

All storage vessels and pipes (containing cyanide) have signs indicating the hazardous nature of the contents. In addition the direction of flow is indicated on pipes carrying cyanide. There is also a decontamination policy for all people leaving areas where cyanide exposure may occur. This includes use of shower and wearing of new clothes.

The facility has its own health centre which is manned by a doctor and nurse during normal office hours. Outside these hours emergency support is provided by the local hospital who are aware of the sites (cyanide) activities and have trained the facilities own first aiders.

Mock drills are performed and these are used to identify where any improvements can be made. Cyanide exposure incidents are also reviewed and lessons are learned and passed on.
PRINCIPLE 3 – MONITORING
Ensure that Process Controls are Protective of the Environment.

Monitoring Practice 3.1: Conduct environmental monitoring to confirm that planned or unplanned releases of cyanide do not result in adverse impacts.

☑ in full compliance with
☐ in substantial compliance with
☐ not in compliance with

Monitoring Practice 3.1

Summarise the basis for this Finding/Deficiencies Identified:

The Draslovka facility is in full compliance with production practice 3.1 requiring an operation to conduct environmental monitoring to confirm that planned or unplanned releases of cyanide do not result in adverse impacts.

There is a direct discharge to surface water. The monitoring undertaken at an adequate frequency demonstrates that the discharge is no greater than 0.5 mg/l WAD cyanide.

Draslovka does not discharge to an established mixing zone, however the discharge to the River Labe is treated to meet applicable standards before being released. There is no indirect discharge to surface water from the Site, which is confirmed through surface water monitoring.

Groundwater contamination beneath the Site is due to historic incidents. Draslovka have implemented a regime of groundwater pumping and treatment to prevent migration of contaminants from the Site. Increase pumping of groundwater for potable use is leading to the migration of contaminants off Site; however this use is not currently impacted. The Regional Authority is responsible for undertaking remediation of the historic contamination and this is currently being agreed between Draslovka and the Regional Authority. Currently there is no established point of compliance for ground water quality.

Atmospheric emissions are controlled by the use of; welded joints, negative pressure in pipe work, inventory of HCN in pipe work and an elevated flare for combustion of emissions from the HCN plant.

Atmospheric emissions are monitored through the use of personal monitors, internal and external sensors. The internal and external sensors operate on a continual basis with results able to be observed live by internal and external parties through the internet. Atmospheric emissions of cyanide are subject to regulatory limits.

The frequency of monitoring for surface water, groundwater and atmospheric emissions are adequate to characterise the various media.
PRINCIPLE 4 – TRAINING

Train Workers and Emergency Response Personnel to Manage Cyanide in a Safe and Environmentally Protective Manner

Training Practice 4.1: Train employees to operate the plant in a manner that minimizes the potential for cyanide exposures and releases.

☑ in full compliance with

☐ in substantial compliance with

☐ not in compliance with

Training Practice 4.1

Summarise the basis for this Finding/Deficiencies identified:

The Draslovka facility is in full compliance with production practice 4.1 to train employees to operate the plant in a manner that minimizes the potential for cyanide exposures and releases.

The Facility trains workers to understand the hazards of cyanide through induction training, which includes how to behave in the presence of special hazardous chemicals and procedure OS26-10 Manipulation with Cyanides. This training is provided before employees are allowed to work with cyanide.

On-going training that is refreshed at least annually is then undertaken for production staff, which includes Training on the Release of Dangerous Chemicals (Especially Cyanide).

The induction training includes the use of PPE through procedure OS 24-04 Providing PPE and includes when and where this equipment is required.

The Facility also trains workers to perform their normal production tasks with minimum risk to worker health and safety in a manner that prevents unplanned cyanide releases through Induction Training, training by the heads of departments and, where necessary, external organisations. In addition there is on-going informal training by the Head of Technology.

The training elements that are necessary for each job are detailed on the Facility’s Intranet. Training is provided by appropriately qualified people who undergo relevant continual professional development.

The effectiveness of emergency training is undertaken through written tests, verbal tests, practical tests and observations of work, which culminates in an annual performance review.
Training Practice 4.2: Train employees to respond to cyanide exposures and releases.

☒ in full compliance with

☐ in substantial compliance with

☐ not in compliance with

Training Practice 4.2

Summarise the basis for this Finding/Deficiencies Identified:

The Draslovka facility is in full compliance with production practice 4.2 to train employees to respond to cyanide exposures and releases.

Workers are trained in procedures OS 22-02 Internal Emergency Plan, OS 25-03 Water Management Emergency Plan, and OS 24-06 Safety, Health and Environmental Regulations, which detail the actions to be taken in the event of a cyanide release.

Workers are trained how to respond to exposure to cyanide through the induction process and on-going training. Routine drills are undertaken for each high risk plant or activity on an annual basis. In addition major drills involving the surrounding community are undertaken every 3 years. Drills are also undertaken as part of the Mutual Assistance Scheme. Training requirements are evaluated after these drills are undertaken by the Safety Manager.

Training records are retained throughout an individual’s employment either by the Head of Training or the department head. There records, which include induction records and records of continuous training, contain the name of employee, and trainer, date of training and topics covered. The employees demonstrates an understanding of the training material through a variety of mechanisms including, written and practical demonstrations the results of which are maintained separately.
PRINCIPLE 5 – EMERGENCY RESPONSE
Protect Communities and the Environment through the Development of Emergency Response Strategies and Capabilities.

Emergency Response Practice 5.1: Prepare detailed emergency response plans for potential cyanide releases.
- [X] in full compliance with
- [] in substantial compliance with
- [] not in compliance with

Emergency Response Practice 5.1

Summarise the basis for this Finding/Deficiencies Identified:
The Draslovka facility is in full compliance with Production Practice 5.1 to prepare detailed emergency response plans for potential cyanide releases.

The Facility has an Emergency Response Plan the three main elements of which are OS 22-02 Internal Emergency Plan, OS 25-03 Water Management Emergency Plan, the External Emergency Plan. The Internal Management Plan was produced by an appropriate third party, which identified worst case failure scenarios as part of a risk assessment for the Site.

The Plan contains specific response actions including: control of any release at source; evacuation of workers and potentially affected communities; use of first aid measure and antidotes; and containment, assessment, mitigation and future prevention of releases.

Emergency Response Practice 5.2: Involve site personnel and stakeholders in the planning process.
- [X] in full compliance with
- [] in substantial compliance with
- [] not in compliance with

Emergency Response Practice 5.2

Summarise the basis for this Finding/Deficiencies Identified:
The Draslovka facility is in full compliance with Production Practice 5.2 to involve Site personnel and stakeholders in the planning process.

All internal procedures including the elements of the Emergency Response Plan have a period of internal consultation prior to being issued. The Internal Emergency Plan and the Water Management Emergency Plan also undergo a period of consultation with the Regional Authority, which represents potentially affected communities. The External Emergency Plan is produced by the Regional Authority with consultation of the Draslovka facility. The External Emergency Plan includes the nature of the risks associated with accidental cyanide releases together with what communications and response actions are required.

The Regional Authority also represents outside responders and medical facilities in the emergency planning and response process through its various departments.

Regular communications with stakeholders are undertaken to assure that the Plan addresses current conditions and risks. At a minimum the internal Emergency Plan, Water Management Emergency Plan and External Emergency Plan are required to be reviewed by all parties at least once every 3 years.
Emergency Response Practice 5.3: Designate appropriate personnel and commit necessary equipment and resources for emergency response.

☑ in full compliance with

☐ in substantial compliance with

☐ not in compliance with

Emergency Response Practice 5.3

Summarise the basis for this Finding/Deficiencies Identified:

The Draslovka facility is in full compliance with production practice 5.3 to designate appropriate personnel and commit necessary equipment and resources for emergency response.

The primary emergency response coordinator with explicit authority to commit the resources necessary to implement the Plan is the Commanding Officer. The Commanding Officer is a title with legal responsibilities for addressing an emergency situation and is defined as the shift leader of the CFFU. The CFFU is called out to all incidents on Site, the procedures for which are detailed within the Emergency Response Plan. The CFFU have the same training as the municipal fire brigade.

The Emergency Response Plan details the call out procedures, the duties and responsibilities of the Commanding Officer and the CFFU, details of emergency response equipment and inspection procedures. The role of outside responders, medical facilities and communities is detailed in the External Emergency Plan.

Outside entities are included in the Plan through the Regional Authority who produces the External Emergency Plan. Once every 3 years a mock drill is undertaken that includes the local community and outside responders.

Emergency Response Practice 5.4: Develop procedures for internal and external emergency notification and reporting.

☑ in full compliance with

☐ in substantial compliance with

☐ not in compliance with

Emergency Response Practice 5.5

Summarise the basis for this Finding/Deficiencies Identified:

The Draslovka facility is in full compliance with production practice 5.4 to develop procedures for internal and external emergency notification and reporting.

The Internal Emergency Plan includes procedures and contact information for notifying management, regulatory agencies, outside responders and medical facilities through a flow chart, which includes appropriate telephone numbers.

Potentially affected communities are notified through the Central Civil Protection Desk located in the police station that is informed by the Draslovka facility. The Communications Officer is responsible for the coordination of the company's response to the media in the event of an emergency, which is detailed in the Emergency Plan.
Emergency Response Practice 5.5:
Incorporate into response plans and remediation measures monitoring elements that account for additional hazards of using cyanide treatment chemicals.

☐ in full compliance with

☐ in substantial compliance with
☐ not in compliance with

Emergency Response Practice 5.2

Summarise the basis for this Finding/Deficiencies Identified:

The Draslovka facility is in full compliance with production practice 5.5 to incorporate into response plans and remediation measures monitoring elements that account for the additional hazards of using cyanide treatment chemicals.

The Internal Emergency Plan and the Water Management Emergency Plan details remediation measures for spills of solutions or solids through dilution and neutralisation through the use of caustic soda or ferrous sulphate. This material is then transferred to the waste water treatment facility for appropriate chemical and biological treatment.

The provision of alternate drinking water supplies is not required due to the distance of the facility to the potable water supply borehole.

The Plan does not detail the use of chemicals for the treatment of cyanide in surface water and there is no surface water on site. Any treatment of the River Labe to which the Facility discharges is the responsibility of the local River Authority. The River Authority is also responsible for any monitoring in the event of contamination of the River Labe.

Atmospheric emissions are monitored through the use of personal monitors, internal and external sensors. The internal and external sensors operate on a continual basis with results able to be observed live by internal and external parties through the internet.

Emergency Response Practice 5.6:
Periodically evaluate response procedures and capabilities and revise them as needed.

☐ in full compliance with

☐ in substantial compliance with
☐ not in compliance with

Emergency Response Practice 5.6

Summarise the basis for this Finding/Deficiencies Identified:

The Draslovka facility is in full compliance with production practice 5.6 to periodically evaluate response procedures and capabilities and revise them as needed.

All internal procedures including the elements of the Emergency Response Plan have a period of internal consultation prior to being issued. The Internal Emergency Plan and the Water Management Emergency Plan also undergo a period of consultation with the Regional Authority, which represents potentially affected communities.

Routine drills are undertaken for each high risk plant or activity on an annual basis. In addition major drills involving the local community are undertaken on a 3 yearly basis. The Draslovka facility is part of a Mutual Assistance Scheme which includes undertaking drills with other members of the MAS reviewing performance. There are also 4 tactical drills undertaken by the CFFU every year.
The Emergency Response Plan has only been used once, which was in 2009. The Plan was informally reviewed after this incident with the outcome finding that no changes were necessary.
ICMI CERTIFICATION SUMMARY REPORT

Report Signature Page

GOLDER ASSOCIATES (UK) LTD

Ed Perry
Lead Auditor

Sophie Wheeler
Reviewer

Date: 23 March 2011
Author: Ed Perry, Dale Haigh/SW/pr

Company Registered in England No.1125149
At Attenborough House, Browns Lane Business Park, Stanton-on-the-Wolds, Nottinghamshire NG12 5BL
VAT No. 209 0084 92
Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation.
At Golder Associates we strive to be the most respected global group of companies specialising in ground engineering and environmental services. Employee owned since our formation in 1960, we have created a unique culture with pride in ownership, resulting in long-term organisational stability. Golder professionals take the time to build an understanding of client needs and of the specific environments in which they operate. We continue to expand our technical capabilities and have experienced steady growth with employees now operating from offices located throughout Africa, Asia, Australasia, Europe, North America and South America.

Golder Associates (UK) Ltd.
Clyde House
Reform Road
Maidenhead
Berkshire
SL6 8BY
UK
T: [+44] 01628 586200