ICMI CERTIFICATION SUMMARY REPORT

Goldcorp Inc., Red Lake Gold Mines, Balmertown, Ontario, Canada

Submitted to:
Goldcorp Inc.
Red Lake Gold Mines
Bag 2000
Balmertown
Ontario
Canada
P0V 1C0

Report Number. 09514150128.501/A.1
Distribution:
Goldcorp Inc. - 2 copies
Golder Associates (UK) Ltd - 1 copy
SUMMARY AUDIT REPORT
Auditors Findings
This operation is:

☑ in full compliance with

☐ in substantial compliance with

☐ not in compliance with

with the International Cyanide Management Code.

Audit Company: Golder Associates
Audit Team Leader: Alistair Cadden, Lead Auditor and Technical Specialist
Email: acadden@golder.com

Name and Signatures of Other Auditors

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Romain Girard</td>
<td>Auditor and Gold Mining Technical Specialist</td>
</tr>
</tbody>
</table>

Dates of Audit
The Certification Gold Mining Operations Verification Audit was undertaken within four days (eight person-days) between 19 July and 23 July 2010.

I attest that I meet the criteria for knowledge, experience and conflict of interest for Code Verification Audit Team Leader, established by the International Cyanide Management Institute and that all members of the audit team meet the applicable criteria established by the International Cyanide Management Institute for Code Verification Auditors.

I attest that this Summary Audit Report accurately describes the findings of the verification audit. I further attest that the verification audit was conducted in a professional manner in accordance with the International Cyanide Management Code Verification Protocol for Gold Mining Operations and using standard and accepted practices for health, safety and environmental audits.

[Signature]
Adrian Peter Mark Watney
Notary Public

Red Lake Gold Mines
Name of Facility

December 2010
Report No. 09514150128.501/A.1

20 December 2010
Date
Table of Contents

1.0 SUMMARY AUDIT REPORT FOR GOLD MINING OPERATIONS ... 1

2.0 LOCATION DETAIL AND DESCRIPTION OF OPERATION ... 1
 2.1 Red Lake Complex (RLC) ... 2
 2.2 Mineral Processing at the Red Lake Complex ... 2
 2.3 Mineral Processing at the Campbell Complex ... 4

SUMMARY AUDIT REPORT ... 7
 Auditors Findings ... 7
 Name and Signatures of Other Auditors ... 7
 Dates of Audit .. 7

PRINCIPLE 1 – PRODUCTION ... 8

PRINCIPLE 2 – TRANSPORTATION ... 9

PRINCIPLE 3 – HANDLING AND STORAGE .. 11

PRINCIPLE 4 – OPERATIONS ... 13

PRINCIPLE 5 – DECOMMISSIONING .. 20

PRINCIPLE 6 – WORKER SAFETY ... 21

PRINCIPLE 7 – EMERGENCY RESPONSE .. 24

PRINCIPLE 8 – TRAINING .. 28

PRINCIPLE 9 – DIALOGUE ... 31

FIGURES
 Figure 1: Red Lake Gold Mines Location Plan ... 2
 Figure 2: Simplified Process Flow Sheet for Red Lakes Complex 4
 Figure 3: Simplified Process Flowsheet for the Campbell Complex 6
1.0 SUMMARY AUDIT REPORT FOR GOLD MINING OPERATIONS

Name of Mine: Red Lake Gold Mines
Name of Mine Owner: Goldcorp Inc.
Name of Mine Operator: Red Lake Gold Mines
Name of Responsible Manager: Ian Glazier
Address: Goldcorp Inc., Red Lake Gold Mines, Bag 2000, Ontario, Canada, P0V 1C0
State/Province: Ontario
Country: Canada
Telephone: +1 (807) 735-2077
Fax: +1 (807) 735-2703
E-Mail: ian.glazier@goldcorp.com

2.0 LOCATION DETAIL AND DESCRIPTION OF OPERATION

Red Lake Gold Mines is located in Balmertown, Ontario, Canada, indicated by the arrow on the map overleaf. Red Lake Gold Mines has had a long and colourful history. The Red Lake Gold Rush began in 1926, during the last of the era's great gold rushes. Early efforts to locate viable gold staked were unsuccessful and most prospectors left the area in frustration. In 1944, as World War II drew to an end, exploratory drilling struck gold, in what is now known as Balmertown, to begin a long line of successes.

In May 2006 Goldcorp acquired the Placer Dome Canadian operations, which saw the combination of two major Canadian gold mining operations. The new Red Lake Gold mines now consists of the Red Lake Complex and the Campbell Complex.
2.1 Red Lake Complex (RLC)

Following the discovery of a high grade ore zone and subsequent expansion of mine facilities, the Red Lake Complex was revitalized and achieved full production on January 1, 2001. Mining is carried out using a combination of underground cut and fill and longhole mining techniques allowing maximum ore extraction and minimal dilution. The high-grade, narrow vein system and the lower grade sulphide ore is being mined at a rate of approximately 1200 tonnes per day.

2.2 Mineral Processing at the Red Lake Complex

The original mill was built in 1948 and was dismantled in early 2000. Following the high grade discovery and subsequent mine expansion, a new mill was commissioned in mid 2000 to treat the new high grade ore. The milling capacity was expanded in 2007 including the addition of a truck dump, vertimill, and two additional carbon-in-pulp (CIP) tanks. The processing facilities consist of three separate plants: the Crushing Plant, Processing Plant, and Paste fill Plant.
The Crushing Plant consists of a two stage process which reduces underground ore size (12 inches to 3/8 inch). The ore is fed to the jaw crusher and then the sizing screen.

The screen oversize is crushed in a cone crusher that reports back to the screen, and screen undersize is conveyed to the Processing Plant for gold extraction.

Separate operations in the Processing Plant consist of grinding, gravity concentrating, leaching with cyanide solution at a pH of 10.5 and cyanide concentration of around 400 mg/L, carbon in pulp, carbon elution and carbon reactivation, electrowinning, bullion smelting/refining, cyanide destruction, flotation, and concentrate handling.

The grinding circuit consists of a ball mill (11.5 feet by 16 feet) in closed circuit with sizing cyclones, with the secondary cyclone underflow feeding a 400 HP Metso Vertimill. Coarse gold is recovered from grinding using three Knelson Concentrators. This gold is upgraded on a shaker table and smelted into bullion on site. During 2007, the gravity circuit recovered over 55% of the gold fed to the processing plant.

Following grinding, thickened slurry is pumped to four leach tanks where gold is dissolved using a weak cyanide solution. Cyanide is added with the target of maintaining 0.5 kg of free cyanide per tonne of ore treated. The slurry, with the gold now in solution, flows to eight CIP tanks that contain granular carbon particles that adsorb the gold. The adsorbed gold is stripped from the carbon using a heated mild caustic solution that is pumped to two electrowinning cells.

Under applied voltage and current density, the gold is electrically plated onto stainless steel cathodes in the cells. The gold is washed off and smelted into bullion on site. The Red Lake Complex refinery currently processes all gold for both the Campbell and Red Lake Complexes. Approximately 30 - 40% of the gold sent to the Processing Plant feed can be recovered in the Cyanidation Circuit.

After exiting the CIP tanks, all remaining cyanide in solution is destroyed. This is accomplished using the SO₂ air treatment process which oxidizes the cyanide component of the slurry and precipitates heavy metals. After the cyanide is destroyed, the slurry flows to the flotation circuit where a concentrate of sulphides, which encapsulates the remaining recoverable gold, is separated from the rest of the slurry stream. In the flotation circuit, chemicals are added to help the gold bearing sulphide minerals adhere to tiny bubbles of air that are added in small agitated tanks. The bubbles rise to the surface and collect in a froth layer which is removed from the surface with paddles. The concentrate is collected and excess water is removed with a thickener and the slurry is sent to the Campbell Complex pressure oxidation circuit via a ~1 km double walled pipeline. On average, about 8 - 10% of the gold in the Processing Plant feed is contained in the sulphide concentrate.

The tailings from the flotation circuit are directed to the Pastefill Plant from where the slurry is either discharged to the Tailings Management Area or mixed and sent underground for use as backfill. Slurry sent underground is first filtered before adding cement, flyash and water to form a paste. Once the proper consistency is achieved, the paste is discharged underground to flow by gravity to the mined out areas.
2.3 Mineral Processing at the Campbell Complex

The mill in the Campbell Complex (CC) has been operating continuously since 1949. It was originally designed to treat 360 tonnes per day, and has been upgraded numerous times over the years to the current capacity of 1,850 tonnes per day. The processing consists of crushing, grinding, gravity recovery, flotation, pressure oxidation, cyanide leach, carbon in leach, carbon in pulp recovery and pastefill.

The crushing plant is a 3 stage process which reduces underground ore size to approximately ½" in size. The ore is fed to a jaw crusher, then to a standard cone crusher, then to a sizing screen. Screen oversize is then fed to a short head cone crusher, which then reports back to the screen. Screen undersize is conveyed on to the grinding circuit.

The grinding circuit is a 2 stage process, with an open circuit rod mill (9 feet by 12.5 feet) followed by a ball mill (12.5 feet by 15.5 feet) in closed circuit with sizing cyclones. Coarse gold is recovered from grinding using a Knelson Concentrator. The gold is upgraded on a shaker table and sent to the refinery at the Red Lake Complex where it is smelted into bullion.

Following grinding, the slurry is fed to the flotation circuit, where a sulphide concentrate is produced. In the flotation circuit, chemicals are added to help the gold bearing sulphide minerals adhere to tiny bubbles of air that are added to the bottom of small agitated tanks. The bubbles rise to the surface and collect in a froth layer which is removed from the surface with paddles. The concentrate is collected and excess water is removed with a thickener. This concentrate is then mixed with concentrate from the Red Lake Complex, and passes into the pressure oxidation circuit. The flotation tails pass on to the cyanide leach circuit.

In the pressure oxidation circuit, thickened flotation concentrate is contacted with weak acidic solution and then pumped into a 9 feet diameter by 60 feet long carbon steel, lead, and acid brick lined autoclave. The oxidation process converts the sulphides to sulphates and the arsenopyrite to scorodite (ferric arsenate). The oxidized slurry is neutralized prior to being leached in the carbon-in-leach circuit. The acidic solutions from the oxidation process are sent to the waste treatment circuit.
The oxide and flotation tailings are leached in cyanide for approximately 72 hours in a weak cyanide solution (around 0.54 kg/tonne of ore treated). Carbon is added to the leach. The gold in solution is adsorbed onto the carbon, and the loaded carbon is screened from the pulp. The gold is stripped from the carbon using a caustic solution. The carbon is then reactivated in a rotary kiln and recycled.

Leached tailings pass through an SO₂ air treatment process which oxidizes the cyanide component of the slurry, reducing the WAD cyanide concentration to less than 50 mg/L prior to being directed to the Pastefill Plant from where the slurry is either discharged to the Waste Treatment circuit or mixed and sent underground for use as backfill. Slurry sent underground is first filtered before adding cement, flyash and water to form a paste. Once the proper consistency is achieved, the paste is discharged underground to flow by gravity to the mined out areas. The combined tailings stream (flotation tailings plus oxide tailings) is mixed with the acidic solution from the pressure oxidation circuit treated with lime to precipitate copper and other metals and increase the pH prior to discharge to the tailing containment area.

Water is pumped from the main tailings pond from May – October and passed through an SO₂ air treatment process which oxidizes the cyanide component in the water reducing the WAD cyanide concentration to less than 0.5 mg/L. The water is also treated at a high pH to remove metals prior to being pumped to the polishing pond and wetland system before discharge into Balmer Lake.
Figure 3: Simplified Process Flowsheet for the Campbell Complex
SUMMARY AUDIT REPORT

Auditors Findings

This operation is:

☑ in full compliance with
☐ in substantial compliance with
☐ not in compliance with

with the International Cyanide Management Code.

Audit Company: Golder Associates
Audit Team Leader: Alistair Cadden, Lead Auditor and Technical Specialist
Email: acadden@golder.com

Name and Signatures of Other Auditors

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Romain Girard</td>
<td>Auditor and Gold Mining Technical Specialist</td>
</tr>
</tbody>
</table>

Dates of Audit

The Certification Gold Mining Operations Verification Audit was undertaken within four days (eight person-days) between 19 July and 23 July 2010.

I attest that I meet the criteria for knowledge, experience and conflict of interest for Code Verification Audit Team Leader, established by the International Cyanide Management Institute and that all members of the audit team meet the applicable criteria established by the International Cyanide Management Institute for Code Verification Auditors.

I attest that this Summary Audit Report accurately describes the findings of the verification audit. I further attest that the verification audit was conducted in a professional manner in accordance with the International Cyanide Management Code Verification Protocol for Gold Mining Operations and using standard and accepted practices for health, safety and environmental audits.
PRINCIPLE 1 – PRODUCTION
Encourage Responsible Cyanide Manufacturing by Purchasing from Manufacturers that Operate in a Safe and Environmentally Protective Manner

Production Practice 1.1: Purchase cyanide from manufacturers employing appropriate practices and procedures to limit exposure of their workforce to cyanide, and to prevent releases of cyanide to the environment

☒ in full compliance with

☐ in substantial compliance with

☐ not in compliance with

Production Practice 1.1

Summarise the basis for this Finding/Deficiencies Identified:

The operation is in full compliance with Standard Practice 1.1, which requires that the site encourage responsible cyanide manufacturing by purchasing from manufacturers that operate in a safe and environmentally protective manner.

The contract between RLGM and DuPont, the cyanide producer requires that the producer be code compliant.

DuPont was certified as code compliant on December 1, 2009.
PRINCIPLE 2 – TRANSPORTATION
Protect Communities and the Environment during Cyanide Transport

Transport Practice 2.1: Establish clear lines of responsibility for safety, security, release prevention, training and emergency response in written agreements with producers, distributors and transporters.

☑ in full compliance with

☐ in substantial compliance with

☐ not in compliance with

Transport Practice 2.1

Summarise the basis for this Finding/Deficiencies Identified:

The operation is in full compliance with Standard of Practice 2.1 which requires that the site establish clear lines of responsibility for safety, security, release prevention, training and emergency response in written agreements with producers, distributors and transporters.

There is a written agreement between the operation, the cyanide producer, distributor, and transporter(s) designating responsibility for packaging, labelling, route selection, storage, transportation loading and unloading, security, safety and maintenance of equipment, training and safety of operators and emergency response throughout the transportation process.

The written agreement specifies that designated responsibilities extend to any subcontractors used by the producer, distributor, transporter of the operation for transportation related activities.

The principal transporter is Miller Transporters Inc and the back-up transporter is RSB Logistics Inc.

Miller Transporters, Inc is a signatory to the Cyanide Code, and their certification report has been obtained from the ICF website and reviewed.

RSB logistics have been audited by S Sessoms, an ICF accredited Transportation auditor and found to be in full compliance with the code (September 25 2007). A copy of the summary audit report has been provided by RLGM and reviewed by the auditors. It confirmed that RSB logistics operates in a manner consistent with the Code. RSB is in the certification process and will not be used for back-up transport of cyanide by RLGM until they become certified.

Transport Practice 2.2: Require that cyanide transporters implement appropriate emergency response plans and capabilities and employ adequate measures for cyanide management

☑ in full compliance with

☐ in substantial compliance with

☐ not in compliance with

Transport Practice 2.2

Summarise the basis for this Finding/Deficiencies Identified:

The operation is in full compliance with the Standard of Practice 2.2 which requires the mine protect communities and the environment during cyanide transport.

Red Lake Gold Mines
Name of Facility

Signature of Lead Auditor

20 December 2010
Date

Golder Associates
The contract between Goldcorp and DuPont establishes clear lines of responsibility for safety, security, release prevention, training and emergency response in written agreements with producers, distributors and transporters. Responsibility for this lies with DuPont up to the point of delivery on site, and is explicitly extended to DuPont's haulage sub-contractors.

The cyanide transporters implement appropriate emergency response plans and capabilities and employ adequate measures for cyanide management. The chain of custody from DuPont's manufacturing facility in Memphis Tennessee USA to the mine site is fully compliant with the code.

The principal transporter is Miller Transporters Inc and the back-up transporter is RSB Logistics Inc.

Miller Transporters, Inc is a signatory to the Cyanide Code, and their certification report has been obtained from the ICMI website and reviewed.

RSB logistics have been audited by S Sessoms, an ICMI accredited Transportation auditor and found to be in full compliance with the code (September 25 2007). A copy of the summary audit report has been provided by RLGM and reviewed by the auditors. It confirmed that RSB logistics operates in a manner consistent with the Code. RSB is in the certification process and will not be used for back-up transport of cyanide by RLGM until they become certified.
PRINCIPLE 3 – HANDLING AND STORAGE

Protect Workers and the Environment during Cyanide Handling and Storage

Handling and Storage Practice 3.1: Design and construct unloading, storage and mixing facilities consistent with sound, accepted engineering practices, quality control/quality assurance procedures, spill prevention and spill containment measures.

☐ in full compliance with

☐ in substantial compliance with Handling and Storage Practice 3.1

☐ not in compliance with

Summarise the basis for this Finding/Deficiencies Identified:

The operation is in full compliance with Handling and Storage Practice 3.1, requiring that cyanide handling and storage facilities are designed and constructed consistent with sound, accepted engineering practices, quality assurance/quality control (QA/QC) procedures, spill prevention and spill containment measures.

The storage facilities have been constructed in accordance with the producer’s recommendations and have been inspected by a P.Eng to verify their design and construction standards.

The main storage facility is located away from people and surface waters. The temporary storage facilities are located within the mill buildings, with suitable secondary containment, HCN detection systems and security measures to minimise the risk of human exposure.

No liquid cyanide is delivered to RLGM, which receives only solid NaCN briquettes in Flo-bins.

The cyanide mixing and distribution tanks have high level alarms which are regularly maintained and checked.

All mixing and distribution tanks are located on concrete plinths to prevent seepage into the ground.

All mixing and distribution tanks have suitable secondary containment to contain a spill in case of a tank rupture.

Cyanide is stored under a roof on a concrete floor, with adequate ventilation, in a secure area and separate from incompatible materials.
Handling and Storage Practice 3.2: Operate unloading storage and mixing facilities using inspections, preventative maintenance and contingency plans to prevent or contain releases and control and respond to worker exposures.

☑ in full compliance with

☐ in substantial compliance with

☐ not in compliance with

Handling and Storage Practice 3.2

Summarise the basis for this Finding/Deficiencies Identified:

The operation is in full compliance with Handling and Storage Practice 3.2 requiring that cyanide handling and storage facilities are operated using inspections, preventive maintenance and contingency plans to prevent or contain releases and control and respond to worker exposures.

Cyanide is delivered to RLGM by Dupont in reusable Flo-bins. The location and status of the Flo-bins is carefully tracked. The Flo-bins are not crushed or rinsed internally, in accordance with Dupont’s requirements. The outside of the Flo-bins are hosed down within the secondary containment areas in the mix areas to remove any residual cyanide. The Flo-bins are returned to Dupont for reuse.

Standard operating procedures, operator training and practices have been developed and implemented to manage cyanide unloading and mixing effectively and safely. Cyanide is delivered in robust steel Flo-bins. The Flo-bins are not stacked on top of each other. Clean up of split material is specified in the standard operating procedures and the Emergency Response Plan. An operator is in attendance during unloading. A second man observes the cyanide mixing remotely by video in the central control rooms or in person a safe distance away from mixing operations.
PRINCIPLE 4 – OPERATIONS
Manage Cyanide Process Solutions and Waste Streams to Protect Human Health and the Environment

Operations Practice 4.1: Implement management and operating systems designed to protect human health and the environment including contingency planning and inspection and preventative maintenance procedures.

- in full compliance with

The operation is
- in substantial compliance with
- not in compliance with

Operations Practice 4.1

Summarise the basis for this Finding/Deficiencies Identified:

The operation is in full compliance with Standard of Practice 4.1, requiring that the operation implement management and operating systems designed to protect human health and the environment including contingency planning and inspection and preventative maintenance procedures.

RLGM has a number of written systems and procedures to ensure that all cyanide facilities are operated safely and in a manner protective of the environment. A series of shut down and restart procedures describe the actions to be taken in case of planned or emergency shutdown and restart of all plant related facilities.

The design and operational assumptions are stated in various operational manuals, such as the Tailings Operations Maintenance and Surveillance (OMS) manual.

RLGM has systems to ensure regular inspection and repair as necessary of cyanide facilities. A preventive maintenance program is in place to ensure the correct functioning of all equipment. These systems are documented and tracked using daily logs and the SAP (a proprietary database) system.

RLGM operates a formalized change management procedure to ensure health, safety and environmental considerations, including the release of cyanide, are given due consideration during and planned process changes.

RLGM has contingency plans in place to deal with an upset in water balance. This includes monitoring water levels in the tailings areas, shut down of the mill and pumping and treatment of contaminated water.

Record keeping of the inspections and systems ensures that their implementation can be readily tracked either as hard copy or on the SAP system.

RLGM has sufficient (over 7 MW) back-up electricity generating capacity to operate critical facilities in the event of a prolonged power outage. This system undergoes inspection, planned maintenance and testing monthly.
Operations Practice 4.2: Introduce management and operating systems to minimise cyanide use, thereby limiting concentrations of cyanide in mill tailings.

☑️ in full compliance with

☐ in substantial compliance with

☐ not in compliance with

Operations Practice 4.2

Summarise the basis for this Finding/Deficiencies Identified:

The operation is in full compliance with Standard of Practice 4.2, requiring that the operation limit the use of cyanide to that optimal for economic recovery of gold so that the waste tailings material has as low a cyanide concentration as practical.

The operation conducts daily titration tests to determine appropriate cyanide addition rates in the mill and evaluate and adjust addition rates as necessary when ore types or processing practices change cyanide requirements.

RLGM has a continuous improvement programme to evaluate cyanide addition rates to optimise cyanide consumption while maximising gold recovery.

RLGM implements a cyanide addition control strategy to minimise cyanide consumption while maximising gold recovery.

Operations Practice 4.3: Implement a comprehensive water management programme to protect against unintentional releases.

☑️ in full compliance with

☐ in substantial compliance with

☐ not in compliance with

Operations Practice 4.3

Summarise the basis for this Finding/Deficiencies Identified:

The operation is in full compliance with Standard of Practice 4.3, requiring the operation to implement a comprehensive water management programme to protect against unintentional releases.

RLGM has developed a comprehensive, probabilistic water balance, which addresses all the elements detailed within the ICMI Auditor Guidance Notes for both the RLC and the CC. Evaluation of several different design storm events including the Probable Maximum Precipitation events for short term event, as well as annual precipitation (up to 200 year return wet and dry), and also takes into account snowmelt events. At CC on the basis of the water balance calculations, the tailings basin has no emergency spillway, and is designed to contain the probable maximum flood (PMF) event. Bathymetric surveys are conducted in the main tailings pond at Campbell Complex and Tailings Area 1 at the Red Lake complex every 2 years. Bathymetric surveys are conducted in the Secondary Pond, the Primary Pond and Tailings area #2 at RLC every 5 years as no tailings are deposited in these areas. The results of the bathymetric surveys are used as input in the water balance. Pond levels are being checked at least bi weekly and input in the water balance model.

The monitoring and inspections record show the pond elevation relative to the freeboard requirements and the spillway elevation. The design freeboard varies with all the facilities but is generally between 0.3 m and 0.8 m. It is 0.3 m for the internal dykes forming the RLC tailings dam and is therefore considered adequate.
The tailings dam is operated generally within very conservative limits for pond levels, and it is the few months before any tailings dam raise that the water level could potentially reach the allowable freeboard level. The probabilistic tools within the water balance allow the environmental department to modify the discharge strategy long before the freeboard level minimum requirement is reached (in case for instance of two successive very wet years). Moreover, if pond water raises above the freeboard requirements this triggers various levels of response, including shut down of the mill and increased discharge through the effluent treatment plant.

The quality of the existing precipitation data is very good and is updated on a regular basis RLGM does not collect on-site meteorological data. The Cochenour airport collects the data that the site uses for the water balance. The airport is within a 6 mile radius of the sites and is representative of on-site conditions. Some specific data are also obtained from the Environment Canada website (evaporation data,) and are being used in the water balance model. RLGM is currently purchasing its own meteorological station which will be used in the future to corroborate the existing data and use in the water balance.

Operations Practice 4.4: Implement measures to protect birds, other wildlife and livestock from adverse effects of cyanide process solutions.

☑ in full compliance with

☐ in substantial compliance with

☐ not in compliance with

Operations Practice 4.4

Summarise the basis for this Finding/Deficiencies Identified:

The operation is in full compliance with Standard of Practice 4.4, requiring the operation implement measures to protect birds, other wildlife and livestock from adverse effects of cyanide process solutions.

Based on the monitoring results at the site, there are no open waters where WAD cyanide exceeds 50 mg/L at RLGM. Cyanide destruction circuits are operational at RLC and CC ensuring the WAD cyanide concentration in the discharge to the tailings area is always below 50 mg/L.

RLGM conducts extensive monitoring of solutions and waters in and around the mine to ensure WAD cyanide concentration does not exceed 50 mg/L.

There has been no cyanide related wildlife mortalities reported at the site since operations began.

There are no heap leach facilities at RLGM.

Operations Practice 4.5: Implement measures to protect fish and wildlife from direct or indirect discharges of cyanide process solutions to surface water.

☑ in full compliance with

☐ in substantial compliance with

☐ not in compliance with

Operations Practice 4.5

Summarise the basis for this Finding/Deficiencies Identified:

The operation is in full compliance with Standard of Practice 4.5, requiring the operation implement measures to protect fish and wildlife from direct or indirect discharges of cyanide process solutions to surface water.

RLGM has direct discharges from the RLC and CC tailings areas.

Red Lake Gold Mines
Name of Facility

Signature of Lead Auditor

20 December 2010
Date

December 2010
Report No. 09614150128.501/A.1

15
Monitoring results show:

- At CC - WAD cyanide concentration ranged from <0.002 mg/L to 0.06 mg/L; and
- At RLC - WAD cyanide concentrations ranged from <0.005 mg/L to 0.013 mg/L.

The monitoring results show the concentrations of free cyanide are below 0.022 mg/L at mixing zone locations in Balmer Lake. The mixing zone was established by Environment Canada in accordance with the requirements of the Metal Mining Effluent Regulations.

There is potential for indirect discharge to surface water from both RLC and CC tailings areas. To date monitoring shows that levels of free cyanide are below 0.022 mg/L.

Cyanide levels in surface water have not risen above levels protective of a designated beneficial use for aquatic life. RLGM is undertaking a biological assessment of the area to ensure impacts due to the operation are minimised. The objectives of this programme are to document the potential impacts to water quality, sediments quality and biological communities in surface waters receiving influenced groundwater. RLGM is also putting in place contingency plans in the event that contaminated groundwater impacts Red Lake or the aquifer at McNeely Bay.

Operations Practice 4.6: Implement measures designed to manage seepage from cyanide facilities to protect the beneficial uses of groundwater.

- in full compliance with

The operation is

- in substantial compliance with
- not in compliance with

Operations Practice 4.6

Summarise the basis for this Finding/Deficiencies Identified:

The operation is in full compliance with Standard of Practice 4.6, requiring the operation implement measures designed to manage seepage from cyanide facilities to protect the beneficial uses of groundwater.

There is no beneficial use of groundwater downstream of the site. There are several systems in place to manage seepage including:

- Clay cores or blankets on tailings dams;
- Tailings beach length and pond size management; and
- Groundwater monitoring wells around the tailings dam area.
- WAD Cyanide concentrations in the groundwater monitoring wells are below detection limits.

Mill tailings are used as underground backfill in the mine. The potential impacts to worker health and the environment are monitored. WAD cyanide has been detected up to a concentration of 0.22 mg/L. HCN gas has not been detected. These concentrations are considered safe with respect to worker health and the environment.

WAD Cyanide concentration from the monitoring wells is below detection levels so it is concluded that seepage from the mine has not caused the concentration of cyanide in groundwater to rise above levels protective of beneficial use. Notwithstanding this, RLGM has implemented a contingency plan in case the level start to rise.

Red Lake Gold Mines
Name of Facility

Signature of Lead Auditor

20 December 2010
Date

December 2010
Report No. 09514150128.501/A.1
Operations Practice 4.7: Provide spill prevention or containment measures for process tanks and pipelines.

☒ in full compliance with

☐ in substantial compliance with

☐ not in compliance with

Operations Practice 4.7

Summarise the basis for this Finding/Deficiencies Identified:

The operation is in full compliance with Standard of Practice 4.7 requiring that the operation provide spill prevention or containment measures for process tanks and pipelines.

Spill prevention or containment measures are provided for the following cyanide unloading, storage, mixing and process solution tanks:

- Cyanide mixing and holding tanks;
- Leach tanks; and
- CIP tanks.

Surveys of the secondary containments show that they have adequate volume to contain the spill of the largest tank within them, plus the design rainfall.

Spills collected in the secondary containments are pumped back into the leaching circuits.

All process tanks have secondary containment, with the exception of the Paste Thickener which does not have secondary containment. Any spillage from the paste thickener would report to the containment ditch which is lined with geomembrane. The lined ditch would transport any spillages from the paste thickener to the tailings pond.

There are procedures in the RLGM surface spill plan with regards to remediating contaminated soil. Any spillage from the paste thickener would report to the containment ditch.

Process solution pipelines are either entirely within the mill building secondary containment areas, or within lined ditched or a 'pipe within a pipe' such as for the tailings pipeline.

The measures described above are such that additional protection measures (other than pipe supports) are not required at surface water crossings.

All tanks and pipelines are constructed with compatible materials such as carbon steel and HDPE.
Operations Practice 4.8: Implement quality control/quality assurance procedures to confirm that cyanide facilities are constructed according to accepted engineering standards and specifications.

- in full compliance with
- in substantial compliance with
- not in compliance with

Operations Practice 4.8

Summarise the basis for this Finding/Deficiencies Identified:

The operation is in full compliance with Standard of Practice 4.8 requiring that operations implement QA/QC procedures to confirm that cyanide facilities are constructed according to accepted engineering standards and specifications.

Quality Assurance/Quality Control (QA/QC) has been undertaken at some of the facilities at RLGM. The mills are both several decades old and QA/QC documentation was not available for them during the audit.

Recent modifications to the plant, such as the new cyanide detoxification plant, have undergone QC checking such as concrete testing, weld testing and engineering inspections. This documentation is available on site.

For facilities without complete QA/QC documentation engineering inspections have been undertaken. The inspection reports of the cyanide facilities prepared by suitably experienced P.Engs address the suitability of construction materials, which include mild steel, stainless steel, reinforced concrete and HDPE.

Both Complexes tailings management areas:

- All tailings dams walls and dykes, as well as all associated structures are being design by and constructed under the supervision of the consulting firm Arne Earth and Environmental, with the design and the construction fully documented; and
- In addition, yearly inspections by the designer confirm that the dams are operating and continue behaving as per the original design intent.

Operations Practice 4.9: Implement monitoring programs to evaluate the effects of cyanide use on wildlife, surface and groundwater quality.

- in full compliance with
- in substantial compliance with
- not in compliance with

Operations Practice 4.9

Summarise the basis for this Finding/Deficiencies Identified:

The operation is in full compliance with Standard of Practice 4.9 requiring that operations implement monitoring programs to evaluate the effects of cyanide use on wildlife, surface and groundwater quality.

The operation has written standard procedures for monitoring activities for wildlife, surface and groundwater quality. This is the Environmental Management System Manual (EMSM), Rev 2 April 2010.

The procedures have been prepared by appropriately qualified persons. All employees from the environmental department are suitably qualified and experienced:

- David Gelderland BSc (Trent University 1984), 16 yrs experience;
Desiree Wilkins is P.Eng (U of Waterloo 2001), 8 yrs experience;

Jamie Russell BSc (Royal Roads University, 2002) 8 yrs experience; and

Andrew Johnston holds a technologist diploma from Sault College (2002) and has 6 years of experience.

The sampling and analysis protocols follow prescribed methods in the Province of Ontario.

The procedures contain information on how and where samples should be taken, sample preservation techniques, chain of custody procedures, shipping instructions, and cyanide species to be analysed.

Sampling conditions and procedures are documented in writing.

RLGM monitors for cyanide species in surface and groundwater samples downstream of the site in accordance with the regulated sampling and compliance points.

RLGM monitors for wildlife mortalities potentially related to contact with cyanide. To date there have been numerous wildlife sightings, but no reported mortalities.

Monitoring is conducted at frequencies adequate to characterise the medium being monitored and to identify changes in a timely manner.
PRINCIPLE 5 – DECOMMISSIONING

Protect Communities and the Environment from Cyanide through Development and Implementation of Decommissioning Plans for Cyanide Facilities.

Decommissioning Practice 5.1: Plan and implement procedures for effective decommissioning of cyanide facilities to protect human health, wildlife and livestock.

☑️ in full compliance with

☐ in substantial compliance with Decommissioning Practice 5.1
☐ not in compliance with

Summarise the basis for this Finding/Deficiencies Identified:

The operation is in full compliance with Standard of Practice 5.1, which requires that the site plan and implement procedures for effective decommissioning of cyanide facilities to protect human health, wildlife and livestock.

RLGM has closure plans for RLC and CC of sufficient detail to enable decommissioning of the facilities on cessation of operations.

These include an implementation schedule and cost estimate for third party contractors to complete the works.

The plans are updated regularly as required and the cost estimates annually.

Decommissioning Practice 5.2: Establish an assurance mechanism capable of fully funding cyanide related decommissioning activities.

☑️ in full compliance with

☐ in substantial compliance with Decommissioning Practice 5.2
☐ not in compliance with

Summarise the basis for this Finding/Deficiencies Identified:

The operation is in full compliance with the Standard of Practice 5.2 which requires that the site establish an assurance mechanism capable of fully funding cyanide related decommissioning activities.

The decommissioning plans include cost estimates for 3rd party contractors to complete the decommissioning works.

The cost estimate is updated annually as part of Goldcorp’s Asset Retirement Obligation reporting.

RLGM has an irrevocable letter of credit payable to the Ministry of Northern Development, Mines and Forestry (MNDF) to fund the third party decommissioning of the Red Lake mines.
PRINCIPLE 6 – WORKER SAFETY
Protect Workers’ Health and Safety from Exposure to Cyanide

Worker Safety Practice 6.1:
Identify potential cyanide exposure scenarios and take measures as necessary to eliminated, reduce and control them.

☐ in full compliance with

☐ in substantial compliance with

☐ not in compliance with

Worker Safety Practice 6.1

Summarise the basis for this Finding/Deficiencies Identified:

The operation is in full compliance with Standard of Practice 6.1 which requires that the site has developed procedures describing how cyanide-related tasks such as unloading, mixing plant operations, entry into confined spaces, and equipment decontamination prior to maintenance should be conducted to minimise worker exposure.

RLGM has developed standard operating procedures (SOPs) and plans that describe the management and operation of the cyanide facilities. These plans and procedures cover the safe operation of the entire cyanide management facilities.

The SOPs specify the use of personal protective equipment (PPE) such as gloves, portable hydrogen cyanide (HCN) monitors, chemical resistant suits and self contained breathing apparatus (SCBA) as necessary. Requirements for pre-work inspections such as pH check, HCN gas level checks and confined space entry permits are included in the SOPs, and workers are trained in their implementation.

RLGM operates a change management procedure which addresses all health and safety aspects of the proposed changes, including specifically measures related to preventing worker exposure or environmental releases of cyanide.

Worker input to H&S procedures is specifically sought through a system of daily meeting, monthly H&S meetings and the ‘white card’ suggestion system.

Worker Safety Practice 6.2:
Operate and monitor cyanide facilities to protect worker health and safety and periodically evaluate the effectiveness of health and safety measures.

☐ in full compliance with

☐ in substantial compliance with

☐ not in compliance with

Worker Safety Practice 6.2

Summarise the basis for this Finding/Deficiencies Identified:

The operation is in full compliance with Standard of Practice 6.2 which requires that the site operate and monitor cyanide facilities to protect worker health and safety and periodically evaluate the effectiveness of health and safety measures.

RLGM has determined the appropriate pH for limiting the evolution of HCN gas during mixing and production activities. The pH is maintained above 10.5 (above 12.5 for mixing) by the addition of lime and caustic soda as appropriate.

Red Lake Gold Mines
Name of Facility

Signature of Lead Auditor

Date: 20 December 2010

December 2010
Report No. 09514150128.501/A.1
ICMI CERTIFICATION SUMMARY REPORT

The site uses a combination of fixed ambient HCN monitors and portable HCN monitors to ensure the safety of the workers. The alarm limits are set at 2.5ppm as an early warning and 4.7ppm as an evacuation alarm.

Fixed HCN monitors are located at the cyanide mixing area, flotation leach gallery, carbon in leach tank area, carbon in pulp splitter area, waste treatment and paste doghouse area at Campbell. Fixed HCN monitors are located at the mixing area, carbon in pulp tank area, and acid tank area and between the pre-leach thickener and the SO₂ storage tank at Red Lake.

The fixed HCN monitors are calibrated monthly. The Boreal laser system has an inbuilt calibration system and is verified by bump testing. The portable monitors are recalibrated prior to each use.

Warning signs are prominently displayed at both RLC and CC. Cyanide facilities are painted purple and workers are trained in the significance of the colour coding and signage. This training is included in the various inductions required to enter the site and the mill area.

Emergency showers, low-pressure eye wash stations are located at appropriate locations in the RLC and CC mills. They are regularly maintained and checked as part of the planned maintenance programme. Dry powder fire extinguishers are located throughout both mills and are checked monthly.

Signage is located prominently throughout the mill and cyanide facilities are painted purple.

First aid instructions for cyanide exposure including material safety datasheets (MSDS) are in each first aid kit, which are located in the Campbell process control and lunch rooms and at the Red Lake control room. Verification was through visual inspection of the first aid procedures. The instructions are in English, the language of the workforce.

RLGM has developed a procedure called “Reporting Accidents/Incidents, Investigations and Unusual Occurrences” to report environmental incidents. This procedure describes reporting procedures, the timing of investigations and a system to be used to classify an environmental incident based on potential severity and probability of recurrence. In addition, this procedure defines clear lines of responsibility for reporting an environmental or worker safety and health-related incident.

Worker Safety Practice 6.3:

Develop and implement emergency response plans and procedures to respond to worker exposure to cyanide.

- in full compliance with
- in substantial compliance with
- not in compliance with

Worker Safety Practice 6.3

Summarise the basis for this Finding/Deficiencies Identified:

RLGM is in full compliance with Standard of Practice 6.3 that requires that the site develop and implement emergency response plans and procedures to respond to worker exposure to cyanide.

Cyanide antidote kits are located at the Campbell Complex (control room, lunch room and nursing station) and at Red Lake (control room and nursing station), one is also kept at the local hospital.

The cyanide emergency response equipment is checked regularly to ensure it is in date and working by the site nurse and the security staff.

RLGM has developed written Emergency Response Plans (ERPs) for cyanide exposures. These plans include the Sodium Cyanide Emergency Response Procedure, the Cyanide Spills – Clean-up Procedure, the Emergency Response Plan (October 2006), the Environmental Spill Response Plan, the Surface
Fire/Emergency Procedure, the Mine-wide Major Emergency Plan and task specific SOPs. The plans address location and use of MSDS and emergency response equipment, incident contact information, response measures, clean-up measures and reporting requirements.

RLGM has on-site trained personnel who are trained in first aid related to cyanide exposure. Verification was through interviews, review of the emergency first responder list, examination of training records and certificates (i.e. First Responders). Every shift has a First Responder trained to administer amyl nitrite and oxygen at each process area. In case of an emergency, the Red Lake Margaret Cochenour Memorial Hospital (Red Lake Hospital) will evacuate (using its own ambulance) and treat patients for cyanide exposure.

The procedure to transport workers exposed to cyanide to the Red Lake Hospital is included in the cyanide antidote procedure using the Red Lake ambulance. The mine will supply a cyanide antidote kit to be transported with the casualty. There is a written acknowledgement by the hospital of the potential requirement to treat patients for cyanide exposure. This confirms their ability to treat cyanide poisoning victims.

In case of an emergency, the Red Lake Hospital will provide evacuation service using its own ambulance. Contact number for the Red Lake ambulance is provided in the cyanide antidote procedure. The site has confirmation from the Red Lake Hospital that it is able to deal with cyanide poisoning emergencies.

RLGM has undertaken a number of mock drills: September 2006, June 2008, August 2009, May 2010 and June 2010. The reports of these drills comprise a description of the incident, a time line of events and a record of learning points and subsequent follow up (e.g. procedural or equipment changes).
PRINCIPLE 7 – EMERGENCY RESPONSE
Protect Communities and the Environment through the Development of Emergency Response Strategies and Capabilities

Emergency Response
Practice 7.1: Prepare detailed emergency response plans for potential cyanide releases.

☑ in full compliance with

The operation is
□ in substantial compliance with
□ not in compliance with

Emergency Response Practice 7.1

Summarise the basis for this Finding/Deficiencies Identified:

RLGM is in full compliance with Standard of Practice 7.1 which requires that the site prepare detailed emergency response plans for potential cyanide releases.

RLGM has developed several plans and manuals that address emergency response. The documents include: the Sodium Cyanide Emergency Response Procedure, RLGM Surface Spill Plan, the Surface Fire/Emergency Procedure, the Mine-Wide Major Emergency Plan and task specific SOPs.

The emergency response plans described in the Environmental Spill Response Plan are detailed and comprehensive, covering all reasonably foreseeable scenarios.

The Environmental Spill Response Plan includes transportation related incidents. Cyanide is transported to the site using either Miller Transports Inc, a Code certified transporter, or RSB Logistics Inc, who have undergone a code equivalent audit. RSB is currently in the certification process and will not be used for back-up transport of cyanide by RLGM until they become certified.

Responsibility for transport related incidents lies with Dupont in accordance with the NaCN supply agreement. However, RLGMs response plan recognises that its facilities may be called upon to assist in dealing with a transportation related emergency, and that it will be responsible for emergencies relating to transportation of Flo-bins around site.

The emergency response plans deal with evacuation of site personnel and affected communities, treatment of patients with exposure to cyanide and control and prevention of cyanide releases.

Emergency Response
Practice 7.2: Involve site personnel and stakeholders in the planning process.

☑ in full compliance with

The operation is
□ in substantial compliance with
□ not in compliance with

Emergency Response Practice 7.2

Summarise the basis for this Finding/Deficiencies Identified:

RLGM is in full compliance with Standard of Practice 7.2 which requires that the site involve site personnel and stakeholders in the planning process.

RLGM has involved mine site staff the Red Lake Hospital, Fire Department, Police Department and ambulance service in the emergency response planning process.
Emergency response and potential risks have been discussed with community groups at meetings and in presentations.

Outside responders have been involved in the emergency response planning process. The results of the cyanide emergency response plan are specifically included in the Corporation of the Municipality of Red Lake Emergency Plan 2010.

RLGM is heavily involved with the civil authorities at Red Lake with respect to the development of emergency response plans. The Municipality has developed the Corporation of the Municipality of Red Lake Emergency Plan in cooperation with RLGM which is updated annually.

Emergency Response Practice 7.3:

Designate appropriate personnel and commit necessary equipment and resources for emergency response.

- [x] in full compliance with

The operation is

- [] in substantial compliance with
- [] not in compliance with

Emergency Response Practice 7.3

Summarise the basis for this Finding/Deficiencies Identified:

RLGM is in full compliance with Standard of Practice 7.3 which requires that the site designate appropriate personnel and commit necessary equipment and resources for emergency response.

The emergency response plans give details of emergency response co-ordinators. Their levels of authority, duties and responsibilities are specified. The Emergency Response Team members are named and trained appropriately. A complete contact number list is included in the emergency response plan which is regularly updated. The emergency response equipment and its inspection and testing requirements are listed in the plan. The roles of outside responders, medical facilities and communities in the emergency response procedures are specified.

Mock emergency drills relating to cyanide emergencies are carried out regularly. The outside responders are involved in some drills. Debriefing sessions are carried out to capture learnings from the exercise and to improve the emergency response procedures.

Emergency Response Practice 7.4:

Develop procedures for internal and external emergency notification and reporting.

- [x] in full compliance with

The operation is

- [] in substantial compliance with
- [] not in compliance with

Emergency Response Practice 7.4

Summarise the basis for this Finding/Deficiencies Identified:

RLGM is in full compliance with Standard of Practice 7.4 which requires that the site develop procedures for internal and external emergency notification and reporting.

The emergency response plan includes procedures and contact information for notifying management, first responder team, governmental agencies, Red Lake Hospital and ambulance, local police, Municipality of Red Lake, etc.

Red Lake Gold Mines
Name of Facility

20 December 2019
Date

December 2010
Report No. 09514150128.501/A.1

25
Red Lake, community leaders and DuPont Chemicals. The contact information is regularly updated as members join or leave the emergency response team.

RLGM has been in contact with the civil authorities (fire, police, hospital and ambulance) regarding cyanide emergency response. The mine would notify the fire chief who would assume control of an emergency response requiring notification of affected communities.

Emergency Response Practice 7.5: Incorporate in response plans and remediation measures monitoring elements that account for the additional hazards of using cyanide treatment chemicals.

☑ in full compliance with

☐ in substantial compliance with Emergency Response Practice 7.5

☐ not in compliance with

Summarise the basis for this Finding/Deficiencies Identified:

RLGM is in full compliance with Standard of Practice 7.5 which requires that the site incorporate in response plans and remediation measures monitoring elements that account for the additional hazards of using cyanide treatment chemicals.

The environmental spill response plan requires that solid cyanide spill are contained and removed back into the circuit; liquid spills within the plant are pumped back into the circuit. Liquid spills outside the plant are contained with earth bunds and drainage channels to prevent run-off into surface water courses. Any resulting contaminated material is removed to the tailings management areas. Requirements for monitoring are specified with clean up levels as required by Provincial regulations. RLGM has a contingency plan to bring bottled of tankered potable water to the area should this be necessary.

The Environmental Spill Response Plan specifically prohibit the use of sodium hypochlorite, ferrous sulphate and hydrogen peroxide to treat cyanide released into surface water.

RLGM has developed a monitoring plan for water and soils that includes immediate response actions consisting of investigating the migration of the release, having trained personnel stop the release when safe to do so, and collection of a sample of the release to determine concentrations; treatment, clean-up and remediation; and collection of analytical information on released material and confirmation samples from the clean-up.

Emergency Response Practice 7.6: Periodically evaluate response procedures and capabilities and revise them as needed.

☑ in full compliance with

☐ in substantial compliance with Emergency Response Practice 7.6

☐ not in compliance with

Summarise the basis for this Finding/Deficiencies Identified:

RLGM is in full compliance with Standard of Practice 7.6 which requires that the site periodically evaluate response procedures and capabilities and revise them as needed.
The ERPs are reviewed and revised annually and also following mock drills and actual incidents as needed.

RLGM conducts mock emergency drills based on likely release/exposure scenarios to test the response procedure. The auditors reviewed reports produced by the site of the emergency drills performed.

RLGM carries our debriefing sessions after mock emergency drills to capture the lessons learnt. The emergency response plans are updated following each debriefing session as necessary.
PRINCIPLE 8 – TRAINING

Train Workers and Emergency Response Personnel to Manage Cyanide in a Safe and Environmentally Protective Manner

Training Practice 8.1: Train workers to understand the hazards associated with cyanide use.
☐ in full compliance with
☐ in substantial compliance with
☐ not in compliance with

Training Practice 8.1

Summarise the basis for this Finding/Deficiencies Identified:

RGLM is in full compliance with Standard of Practice 8.1, which requires that the site train workers to understand the hazards associated with cyanide use.

All new employees and contractors who may be performing cyanide use-related tasks are required to complete new hire training, including cyanide training.

Cyanide hazard recognition refresher training is part of the refresher training which is carried out annually. In addition, safety daily and monthly meetings are conducted at the process areas to discuss changes in cyanide management SOPs and policies, and provide continuous refresher training in cyanide-related issues.

Training records, including cyanide hazard awareness and task specific training, are kept at the Safety Department at Campbell and Red Lake and are stored in the SAP database.

Training Practice 8.2: Train appropriate personnel to operate the facility according to systems and procedures that protect human health, the community and the environment.
☐ in full compliance with
☐ in substantial compliance with
☐ not in compliance with

Training Practice 8.2

Summarise the basis for this Finding/Deficiencies Identified:

RGLM is in full compliance with Standard of Practice 8.2 which requires that the site train appropriate personnel to operate the facility according to systems and procedures that protect human health, the community and the environment.

All personnel on the site receive induction training which contains a cyanide awareness component. All personnel in job positions that involve the use of cyanide and cyanide management receive training on how to perform their assigned tasks with minimum risk to worker health and safety. Individual training is provided for each specific task an operator will perform related to cyanide management.

Training elements for each specific job are identified in the training materials. The training materials comply with the ‘Common Core’ training elements for Programme 810050 (as defined by Ministry of Colleges, Training and Universities in Ontario). Training material includes training objectives, safety measures, process description, equipment location and recognition, PPE, hazardous materials, tools and emergency procedures.
Training is delivered by competent qualified personnel who have passed the Mines Aggregates Safety and Health Association (MASHA) ‘Train the Trainer’ course. DuPont provided training to the Safety team in 2005 with subsequent refresher training in 2010. The safety team is now responsible for providing training and refresher training in cyanide management and emergency response to new and old employees.

Employees are trained prior to working with cyanide, initially in training courses and then on the job training and observations. Individual training is provided for each specific task an operator will perform related to cyanide management. The operator will be observed by their trainer, who evaluates their work performance and will sign them off as competent when deemed to be so.

Cyanide management and emergency response is part of the refresher training. In addition, safety daily and monthly meetings are conducted at the process areas to discuss changes in cyanide management SOPs and policies, and provide continuous refresher training in cyanide-related issues.

RLGM requires written tests to evaluate the effectiveness of cyanide training. Records of written tests are retained and were reviewed. In addition, operators who perform cyanide-related tasks are observed by their supervisors to evaluate their performance.

Training records are retained throughout an individual’s employment, documenting the training received. Training records include the names of the employee and the trainer, the date of training, training duration and the topics covered.

Training Practice 8.3: Train appropriate workers and personnel to respond to worker exposures and environmental releases of cyanide.

☑ in full compliance with
☐ in substantial compliance with
☐ not in compliance with

Training Practice 8.3

Summarise the basis for this Finding/Deficiencies Identified:

RLGM is in full compliance with Standard of Practice 8.3 which requires that the site train appropriate workers and personnel to respond to worker exposures and environmental releases of cyanide.

Personnel responsible for cyanide off-loading and mixing, processing, tailings operations and maintenance are trained in procedures to follow if cyanide is released. Task specific SOPs, the Environmental Spill Response Plan, tailings emergency plans and ERPs describe release response procedures for cyanide release incidents.

RLGM undertakes regular mock emergency drills to test their emergency response procedures and capabilities. Verification included review of training records, review of mock emergency drill records and their debriefing sessions, and interviews with operators.

The RLGM First Responders have received training in fire-fighting, HAZMAT, rescue, missing including confined spaces, first aid, specialised spill response training, potable and recovery pump training, radiation (nuclear), SCBA training, cyanide antidote kit and cyanide management training.

RLGM relies on the Municipality of Red Lake fire brigades to intervene in major fire emergencies involving multiple buildings and the evacuation of the town. In addition, RLGM relies on the Red Lake Hospital to evacuate and treat patients for cyanide exposure. The Municipality has developed a Municipality of Red Lake Emergency Plan in cooperation with RLGM.
RLGM requires and provides refresher courses for response to cyanide exposures. In addition, cyanide-related health and safety topics are discussed during daily meetings at process areas. Safety personnel also provide brief refresher training at monthly safety crew meetings.

RLGM regularly conducts mock emergency response drills to test their emergency response procedures and capabilities. These cover both worker exposure and environmental release.

The mock drills are followed up with a debriefing session where the learnings are captured. These learnings are subsequently incorporated into updates of the procedures and training materials.

Training records are retained throughout an individual's employment, documenting the training received. Training records include the names of the employee and the trainer, the date of training, training duration and the topics covered.
PRINCIPLE 9 – DIALOGUE
Engage in Public Consultation and Disclosure

Dialogue Practice 9.1: Provide stakeholders the opportunity to communicate issues of concern.

☒ in full compliance with
☐ in substantial compliance with
☐ not in compliance with

Dialogue Practice 9.1

Summarise the basis for this Finding/Deficiencies Identified:

RLGM is in full compliance with Standard of Practice 9.1 which requires that the operation provide stakeholders the opportunity to communicate issues of concern.

RLGM provides numerous avenues for stakeholders to communicate issues of concern regarding the management of cyanide including:

- Community meetings, such as the Lac Seul band meeting, Family Day and Earth Day hosted in 2010;
- Public trips to the mine; and
- Annual sustainability report available in hard copy at the mine or from Barrick corporate website.

Dialogue Practice 9.2: Initiate dialogue describing cyanide management procedures and responsively address identified concerns.

☒ in full compliance with
☐ in substantial compliance with
☐ not in compliance with

Dialogue Practice 9.2

Summarise the basis for this Finding/Deficiencies Identified:

RLGM is in full compliance with Standard of Practice 9.2 which requires that the site initiate dialogue describing cyanide management procedures and responsively address identified concerns.

RLGM conducts community meetings where the members of the general public and government leaders are encouraged to attend and discuss issues related to the mining operations including the use of cyanide. The RLGM provides public site tours that include a visit to the process areas and cyanide facilities. Visitors include residents of Balmertown and Red Lake, technical experts, stakeholders, regulators. RLGM also hosts many community events such as Earth Day and Family Day which are used as opportunities to disseminate information about cyanide hazards and management.
Dialogue Practice 9.3: Make appropriate operational and environmental information regarding cyanide available to stakeholders.

☒ in full compliance with

☐ in substantial compliance with

☐ not in compliance with

Dialogue Practice 9.3

Summarise the basis for this Finding/Deficiencies Identified:

RLGM is in full compliance with Standard of Practice 9.3 which requires that the site make appropriate operational and environmental information regarding cyanide available to stakeholders.

RLGM has developed written descriptions of the mine process and use of cyanide in the Campbell and Red Lake Mines.

RLGM’s information regarding cyanide has been made available to stakeholders through various media including the company website, public meetings and open days and public tours through the mine and mill facilities.

RLGM is legally obliged to publish data regarding cyanide incidents to the Ministry of Labour, Ministry of the Environment and Environment Canada. These records are publicly available.

Details of health and safety and environmental performance are also available on the Goldcorp website.

At Golder Associates we strive to be the most respected global group of companies specialising in ground engineering and environmental services. Employee owned since our formation in 1960, we have created a unique culture with pride in ownership, resulting in long-term organisational stability. Golder professionals take the time to build an understanding of client needs and of the specific environments in which they operate. We continue to expand our technical capabilities and have experienced steady growth with employees now operating from offices located throughout Africa, Asia, Australasia, Europe, North America and South America.

Golder Associates (UK) Ltd.
Clyde House
Reform Road
Maidenhead
Berkshire
SL6 8BY
UK
T: [+44] 01628 586200

Africa: +27 11 254 4800
Asia: +852 2562 3658
Australasia: +61 3 8862 3300
Europe: +39 361 42 30 20
North America: +1 800 275 3281
South America: +55 21 3565 9500

solutions@golder.com
www.golder.com