ICMI RECERTIFICATION SUMMARY REPORT

Marlin Gold Mine

Submitted to:
Montana Exploradora de Guatemala S.A.
Europlaza World Business Center
5ª Avenida 5-55 Zona 14
Torre I, Nivel 6 Oficina 601
Guatemala, C.A.

Report Number. 12931 C1030
Distribution:
Goldcorp Reno 1 copy
Marlin 1 copy
ICMI 1 copy
GAASA San Juan 1 copy
GAI Denver 1 copy
GASA Santiago 1 copy
Table of Contents

1.0 SUMMARY AUDIT REPORT FOR GOLD MINING OPERATIONS 1
2.0 LOCATION DETAIL AND DESCRIPTION OF OPERATION.................... 1
SUMMARY AUDIT REPORT .. 4
PRINCIPLE 1 – PRODUCTION ... 5
PRINCIPLE 2 – TRANSPORTATION ... 6
PRINCIPLE 3 – HANDLING AND STORAGE ... 8
PRINCIPLE 4 – OPERATIONS .. 10
PRINCIPLE 5 – DECOMMISSIONING .. 16
PRINCIPLE 6 – WORKER SAFETY .. 18
PRINCIPLE 7 – EMERGENCY RESPONSE ... 22
PRINCIPLE 8 – TRAINING ... 28
PRINCIPLE 9 – DIALOGUE .. 32

FIGURES
No se encuentran elementos de tabla de ilustraciones.
1.0 SUMMARY AUDIT REPORT FOR GOLD MINING OPERATIONS

Name of Mine: Marlin
Name of Mine Owner: Goldcorp
Name of Mine Operator: Montana Exploradora de Guatemala S.A.
Name of Responsible Manager: Peter Hughes-Hallett

Address: Marlin Mine
Montana Exploradora de Guatemala S.A.
5 Avenida 5-55 Zona 14
Torre I, Nivel 6 Oficina 601
Europlaza World Business Center

State/Province: Guatemala City
Country: Guatemala
Telephone: Tel: + (502)-2329-2600
Fax: + (502)-2329-2610
E-Mail: peter.hughes@goldcorp.com
Website: www.goldcorp.com

2.0 LOCATION DETAIL AND DESCRIPTION OF OPERATION

Location and Description of Operation

The Marlin Mine (Marlin) is operated by Montana Exploradora de Guatemala, S.A. (Montana), a subsidiary of Goldcorp Inc. Marlin is located in the western highlands of Guatemala at an elevation of approximately 2,300 meters above sea level, about 120 kilometers (km) west-northwest of Guatemala City (Figure 1). Marlin is a gold and silver mine and processing facility located in the municipalities of San Miguel and Sipacapa, in the Department of San Marcos. The mining concession is 20 km². Marlin is a combination open pit and underground mining operation with a cyanide leach/Merrill-Crowe processing facility. Marlin has been in operation since late 2005. The mine employs 1,061 direct workers and 400 contractors. The mill throughput average is approximately 6,000 tonnes per day (tpd). Rainfall at the Marlin site is estimated to average approximately 1,000 mm/year and occurs primarily during the wet season when about 90% of the annual precipitation occurs. The average annual pan evaporation is 1,708 mm.
Mining occurs simultaneously using both underground and open pit methods. Ore is hauled approximately 2 km from the mine to the crushing and grinding facility. Fluor Daniel Inc. was the project designer. They used sound engineering practices for the design of all cyanide unloading, storage and mixing. Marlin’s cyanide circuit consists of a gravity concentrator and intensive cyanidation reactor, grinding thickener, pregnant solution storage tank, cyanide mixing tank, cyanide storage tank, process water storage tank, six leach tanks, five counter current decantation (CCD) tanks, cyanide recovery thickener and interconnection pipes. The ground ore is processed in tanks by an agitated leach in a cyanide solution. The resulting product is passed through a CCD system. Gold and silver are recovered from solution by a zinc precipitation/Merril-Crowe system. The tailings from the CCD are treated to pass through an Inco/SO₂ system to neutralize the residual weak acid dissociable (WAD) cyanide concentrations to approximately 0.5 mg/L prior to passing to a filter plant. The tailings are filtered to around 85% solids and deposited into waste dumps. Water from the filter plant is returned to the leach plant for re-use. The filter plant is not considered a cyanide facility under the terms of the Code as cyanide concentrations are consistently below 0.5mg/L WAD cyanide. Marlin has a water treatment plant that treats the water from the tailings reclaim and then returns the water back to the tailings storage facility (TSF). This plant will be used to treat all water that may have to be discharged in the future. Currently Marlin operates as a zero discharge facility. Marlin has a permit to discharge water if it is needed. The TSF has a phased earth and rockfill embankment. The embankment has an inclined, low-permeability core, a grout curtain to control seepage through the embankment foundation, internal drainage and a dam seepage collection system. At the time of the site visit a new spillway was under construction.

Marlin receives solid sodium cyanide from E.I. DuPont De Nemours & Co., Inc. (DuPont) delivered to the site in intermediate bulk container (IBC) plywood boxes. Sodium cyanide supply chain is managed by DuPont, a signatory company to the International Cyanide Management Code (Code) and certified as compliant with the Code. The DuPont sodium cyanide supply chain, which includes different DuPont’s distributors and contract transporters, has been audited for due diligence and compliance with the Code by qualified Code...
auditors. The sodium cyanide box containers are stored in a secure, concrete floor and stem wall contained, aluminum wall and roofed warehouse.

Marlin has identified potential cyanide exposure scenarios and developed plans and standard operating procedures (SOPs) to eliminate, reduce and control exposure to cyanide. Operating plans and individual task specific SOPs provide details for safe storage, handling and mixing of sodium cyanide briquettes; safe operation of cyanide equipment; personal protective equipment (PPE) requirements; and inspection requirements. The cyanide mixing and storage tanks are within concrete containments with spill collection sumps. The areas have appropriate ventilation and hydrogen cyanide (HCN) monitoring, and high-level alarms to prevent overfilling. Marlin stores and manages cyanide in engineered tanks, pipelines, concrete containments, reagent storage and cyanide neutralization plant under appropriate quality control and quality assurance (QA/QC) programs. All pipelines are colour coded to identify the content with the flow directions marked.

Marlin employees are trained in cyanide hazards and first aid, emergency response and specific operational tasks. Marlin has a perimeter fencing around cyanide related facilities to prevent wildlife, livestock and unauthorized personnel access to the property. Within the property, key facilities of the cyanide process areas are also fenced. Marlin employs inspection and preventive maintenance programs to assure that all cyanide equipment and facilities are functioning as designed and to monitor process solutions. Marlin has developed a comprehensive closure plan to complete the appropriate management of cyanide solutions and solids, and the decontamination of cyanide tanks, pipelines, processing equipment and structural components associated with the cyanide process.

Marlin has an emergency response team that is trained to respond to fires involving cyanide, chemical spills and decontamination, and worker exposures to cyanide. Marlin works with local community emergency responders to assure that adequate resources are available to address offsite emergencies as needed. Marlin provides information on the onsite use and management of cyanide to communities, general public and other stakeholders in written format and oral form, in both, Spanish and Mam (the dialect spoken by the nearby communities). Marlin also provides opportunities for stakeholders to communicate issues of concern regarding the cyanide use and management at the mine through its corporate website, community sessions and others.
SUMMARY AUDIT REPORT

Auditors Findings

This operation is:

☑ in full compliance with

☐ in substantial compliance with

☐ not in compliance with

with the International Cyanide Management Code.

Audit Company: Golder Associates
Audit Team Leader: Alistair Cadden, Lead Auditor and Technical Specialist
Email: acadden@golder.com

Name and Signatures of Other Auditors

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ivon Aguinaga</td>
<td>Auditor, Gold Mining Technical Specialist</td>
</tr>
</tbody>
</table>

Dates of Audit

The Certification Gold Mining Operations Verification Audit was undertaken within four days (eight person-days) between 16th and 19th July 2012.

I attest that I meet the criteria for knowledge, experience and conflict of interest for Code Verification Audit Team Leader, established by the International Cyanide Management Institute and that all members of the audit team meet the applicable criteria established by the International Cyanide Management Institute for Code Verification Auditors.

I attest that this Summary Audit Report accurately describes the findings of the verification audit. I further attest that the verification audit was conducted in a professional manner in accordance with the International Cyanide Management Code Verification Protocol for Gold Mining Operations and using standard and accepted practices for health, safety and environmental audits.
PRINCIPLE 1 – PRODUCTION

Encourage Responsible Cyanide Manufacturing by Purchasing from Manufacturers that Operate in a Safe and Environmentally Protective Manner

Production Practice 1.1: Purchase cyanide from manufacturers employing appropriate practices and procedures to limit exposure of their workforce to cyanide, and to prevent releases of cyanide to the environment

☑ in full compliance with

☐ in substantial compliance with production Practice 1.1

☐ not in compliance with

Summarise the basis for this Finding/Deficiencies Identified:

The operation is in full compliance with Standard of Practice 1.1, which requires that the site encourage responsible cyanide manufacturing by purchasing from manufacturers that operate in a safe and environmentally protective manner.

Cyanide supply is the same as for the original certification audit.

The cyanide used at Marlin is produced by E.I. DuPont De Nemours & Co., Inc. (DuPont) at their Memphis, TN, USA plant. The contract between Goldcorp and DuPont was signed in January 2009 and is valid until terminated by either party, subject to a notice period of 180 days. The contract specifically identifies the ICMC certification requirements as a provision.

Cyanide has not been supplied to the mine by any other manufacturer during the period of the recertification audit.

DuPont’s production facility was initially certified as compliant by the ICMI on June 13, 2006. The facility was recertified as fully compliant December 1, 2009. Renewal of the certification will become due in December 2012. The site has been fully compliant for the full period covered by Marlin’s recertification audit.
PRINCIPLE 2 – TRANSPORTATION
Protect Communities and the Environment during Cyanide Transport

Transport Practice 2.1: Establish clear lines of responsibility for safety, security, release prevention, training and emergency response in written agreements with producers, distributors and transporters.

☑ in full compliance with

The operation is □ in substantial compliance with

☐ not in compliance with

Transport Practice 2.1

Summarise the basis for this Finding/Deficiencies Identified:

The operation is in full compliance with Standard of Practice 2.1 which requires that the site establish clear lines of responsibility for safety, security, release prevention, training and emergency response in written agreements with producers, distributors and transporters.

The sodium cyanide supply contract is the same as for the original certification audit. The supply chain is also the same.

Each link of the supply chain has been certified under the Code throughout the recertification audit period. Intermodal Cartage Co. Inc. takes the cyanide from Dupont’s production plant to a railhead in Memphis. Intermodal Cartage was certified as fully compliant with the ICMI Transportation Protocol in May 2010. Dupont’s Global Ocean Supply Chain was certified as fully code compliant August 18, 2010 (covering rail partners (including rail yards), US ports of departure Jacksonville, Long Beach, Los Angeles, Miami, New Orleans, San Pedro, Savannah, Seattle in the United States, ocean carriers American President Lines (APL), Hamburg Sued, Maersk Line Agency, Mediterranean Shipping Co. (MSC), MITSUI O S K Lines LTD (MOL) and Seaboard Marine, and ports in Argentina, Belgium, Brazil, Chile, Colombia, Dominican Republic, Ecuador, Ghana, Guatemala, Honduras, Nicaragua, Panama, Peru, Uruguay and Venezuela). Dupont’s Guatemala Supply Chain was certified as fully compliant with the Code May 1, 2012

Transport Practice 2.2: Require that cyanide transporters implement appropriate emergency response plans and capabilities and employ adequate measures for cyanide management

☑ in full compliance with

The operation is □ in substantial compliance with

☐ not in compliance with

Transport Practice 2.2

Summarise the basis for this Finding/Deficiencies Identified:

The operation is in full compliance with the Standard of Practice 2.2 which requires the mine protect communities and the environment during cyanide transport.

Review of the sodium cyanide contract indicates that Goldcorp does not contract with cyanide transporters directly. Goldcorp’s contract is with DuPont and requires DuPont and its transportation personnel, distributors and contract transporters to comply with all applicable ICMI Code Principles, Standards of Practice, performance goals, audit recommendation and certification requirements applicable to the transportation to Marlin including the specific compliance matters set out in the ICMI Cyanide Transportation Verification Protocol.
Marlin has records for the Receipt/Invoice Entry – Batch Control Report, which document the ordering of the cyanide; invoices from DuPont for the shipping of the cyanide noting port of delivery in Guatemala. The following documents are used for inventory controls and chain of custody documentation:

- Bill of Lading issued by Maersk, including the number of the containers and their identification number, the number of Intermediate Bulk Containers (IBCs) and net weight.

- Tax Administration Superintendence’s Goods Statement that includes the number of IBCs, the sea container identification number, and net weight declared.

- Piman’s Manifest with the sea container number. The mine stamps the Piman manifest when it receives the load and keeps the Bill of Lading and the Goods Statement.
PRINCIPLE 3 – HANDLING AND STORAGE
Protect Workers and the Environment during Cyanide Handling and Storage

Handling and Storage Practice 3.1: Design and construct unloading, storage and mixing facilities consistent with sound, accepted engineering practices, quality control/quality assurance procedures, spill prevention and spill containment measures.

☒ in full compliance with

The operation is ☐ in substantial compliance with Handling and Storage Practice 3.1

☐ not in compliance with

Summarise the basis for this Finding/Deficiencies Identified:

The operation is in full compliance with Handling and Storage Practice 3.1, requiring that cyanide handling and storage facilities are designed and constructed consistent with sound, accepted engineering practices, quality assurance/quality control (QA/QC) procedures, spill prevention and spill containment measures.

All facilities for unloading, mixing and storing cyanide have been designed and constructed in accordance with existing accepted engineering practices. No changes or modifications have been made to these facilities since the initial certification audit.

Unloading and storage areas of solid and liquid cyanide are located away from people and surface waters within a fenced and gated area. In addition, solid sodium cyanide is loaded into a secure and locked cyanide storage warehouse.

The cyanide warehouse has concrete floor that minimizes the potential for seepage, even in the unlikely event that rain would mix with the cyanide dust. Liquid cyanide mixing and storage tanks have locked drainage valves on the pumps and tank and are located within the process plant concrete containment. Marlin has installed level indicators and high level alarms to prevent the overfilling of cyanide storage tanks.

Incompatible chemicals are stored in separate concrete containment areas. Fences are installed around the mine site.

Handling and Storage Practice 3.2: Operate unloading storage and mixing facilities using inspections, preventative maintenance and contingency plans to prevent or contain releases and control and respond to worker exposures.

☒ in full compliance with

The operation is ☐ in substantial compliance with Handling and Storage Practice 3.2

☐ not in compliance with

Summarise the basis for this Finding/Deficiencies Identified:

The operation is in full compliance with Handling and Storage Practice 3.2 requiring that cyanide handling and storage facilities are operated using inspections, preventive maintenance and contingency plans to

Marlin has developed and implemented a comprehensive set of procedures to prevent and control exposures and releases during unloading, mixing and storage. Procedures include the following:
The operation of critical cyanide valves related to the addition of caustic, raw water and connection with the storage tank during cyanide mixing activities. Signs identifying cyanide tanks and their corresponding critical values are placed in the mixing and storage areas.

The removal from the delivery truck and safe transport from the warehouse to the mixing area of the sodium cyanide IBCs. Traffic is controlled around the unload area using traffic cones and the presence of Security Personnel. Cyanide unloading and mixing activities are not allowed during a rainfall event.

A maximum stacking height of three IBCs in the warehouse. In addition, “first in/first out” procedures are applied by Marlin.

The prompt clean-up of solid and liquid cyanide spills during mixing. Any liquid spills or leaks within the concrete containments are automatically pumped from the leaching area sump back into the grinding thickener. Observation of the Marlin containments indicated good housekeeping practices.

Required PPE including Tyvek® suits, full face shield, rubber boots, gloves and dust respirators for unloading and mixing activities. The Marlin procedure requires that a minimum of two operators be present for the mixing. A cyanide mixing event was observed during the audit to verify that required procedures are followed.
PRINCIPLE 4 – OPERATIONS
Manage Cyanide Process Solutions and Waste Streams to Protect Human Health and the Environment

Operations Practice 4.1: Implement management and operating systems designed to protect human health and the environment including contingency planning and inspection and preventative maintenance procedures.

☒ in full compliance with
☐ in substantial compliance with Operations Practice 4.1
☐ not in compliance with

Summarise the basis for this Finding/Deficiencies Identified:

The operation is in full compliance with Standard of Practice 4.1, requiring that the operation implement management and operating systems designed to protect human health and the environment including contingency planning and inspection and preventative maintenance procedures.

Marlin has developed a series of standard operating procedures and operating plans/manuals that describe the practices necessary for the safe and environmentally sound operation of the facility, including the specific measures needed for compliance with the Code and regulatory requirements. The procedures and operating plans cover the operation’s water management strategies for process facilities including any upset, malfunction or failure of the management fluid system (i.e. water balance upset, overtopping of tanks, broken pipelines, ruptured valves, planned or emergency shutdown and restart of all plant related facilities, and others).

Marlin has developed and implements inspection and preventative maintenance programs to assure the continuous and safe operation of the equipment for cyanide management. Inspections include the milling, leaching, CCD, Merrill Crowe and neutralization circuits (including the cyanide warehouse) as well as the TSF, the seepage collection pond and the water treatment plant (WTP). Preventive maintenance programs cover pH and HCN meters, emergency power generators, tank and sump level indicators, pumps, valves, and tanks. The inspection and maintenance frequency is sufficient to assure that cyanide facilities are functioning within the design parameters.

Marlin uses the SAP system for identifying, assigning responsibility, scheduling, and tracking the completion of the preventative maintenance activities. The SAP system identifies future activities for regular preventative maintenance and includes information on the task requirements and completion.

Marlin has 8 emergency power generators to operate all the process facilities during power outages.

Auditors reviewed procedures, operating plans, inspections records and maintenance records to verify compliance.

Operations Practice 4.2: Introduce management and operating systems to minimise cyanide use, thereby limiting concentrations of cyanide in mill tailings.

☒ in full compliance with
☐ in substantial compliance with Operations Practice 4.2
☐ not in compliance with

Summarise the basis for this Finding/Deficiencies Identified:
The operation is in full compliance with Standard of Practice 4.2, requiring that the operation limit the use of cyanide to that optimal for economic recovery of gold so that the waste tailings material has as low a cyanide concentration as practical.

Marlin conducts routine metallurgical testing (agitation tests) to evaluate addition and recovery rates. Agitation tests are conducted 4 to 5 times a month. There are two ore types (underground and surface mine) with differing sulfide and precious metals concentrations. The ores are blended to optimize recovery and minimize cyanide consumption. The Marlin cyanide application rate ranges between 400 - 500 ppm free cyanide based on the optimization studies. Samples for the optimization studies were run at different free cyanide concentrations (350, 375, 400, 425, 450, 475 and 500 ppm). Auditors reviewed results from the cyanide optimization studies conducted in 2010, 2011 and 2012 to verify compliance.

Marlin adjusts the cyanide addition rate in the process, as needed, to maintain a WAD cyanide concentration that the neutralization system can detoxify to 0.5 mg/L or lower at the tailings discharge. Cyanide content and pH are analyzed manually using a titration method every two hours. Cyanide content and pH are recorded on daily process reports.

Operations Practice 4.3: Implement a comprehensive water management programme to protect against unintentional releases.

☑ in full compliance with

☐ in substantial compliance with

☐ not in compliance with

Operations Practice 4.3

Summarise the basis for this Finding/Deficiencies Identified:

The operation is in full compliance with Standard of Practice 4.3, requiring the operation to implement a comprehensive water management programme to protect against unintentional releases.

Marlin has developed a comprehensive water balance that is tracked and updated with actual process values on a monthly basis. The water balance model tracks water flow throughout the site-wide engineered water management facilities, including the TSF and any authorized discharges of treated process water to surface waters through the TSF decant system and the WTP. In 2007, Water Management Consultants developed a conceptual probabilistic water balance model. This model has been adjusted to calibrate the model to existing operational and onsite meteorological data.

The water balance model includes the tailing discharge rate, the annual production rate for the mill, the geotechnical properties of the tailings, direct precipitation run-on to the tailings facility surface, TSF catchment runoff, flow from the downgradient seepage collection tank (includes seepage through the dam and runoff from the downstream dam face) and reclaim water to the mill. In addition, the water balance model considers the pumped inflow from mine dewatering activities and from various other non-cyanide facilities as well as the treatment rate capacity of the WTP and the decant discharge rate. The water balance model also takes into account the design criterion for containment (the 100-year / 24-storm event).

Marlin has developed a written procedure (MM-PP-PROC-37-12 GoldSim Data Update) to calibrate the model with onsite meteorological data and other field conditions at least annually and whenever there are significant changes to the water management system.

Marlin inspects and monitors the TSF impoundment and the seepage collection pond to prevent overtopping in accordance with their Tailings Storage Facility Operating and Maintenance Plan (Marlin Engineering LLC, August 2005).

Operations Practice 4.4: Implement measures to protect birds, other wildlife and livestock from adverse effects of cyanide process solutions.

☑ in full compliance with
The operation is ☑ in substantial compliance with Operations Practice 4.4
☐ not in compliance with

Summarise the basis for this Finding/Deficiencies Identified:

The operation is in full compliance with Standard of Practice 4.4, requiring the operation implement measures to protect birds, other wildlife and livestock from adverse effects of cyanide process solutions.

Marlin has been successful in preventing wildlife mortality related to cyanide in the open water pond by treating the tailings slurry discharge to below 50 mg/L WAD cyanide prior to discharge to the TSF. Marlin has implemented cyanide neutralization (INCO/\(\text{SO}_2\)) treatment system as a primary means to maintain WAD cyanide concentrations below 50 mg/L in open waters. Otherwise, all process solutions and slurries are in tanks and pipelines located within a fenced and guarded area.

Marlin conducts WAD cyanide analysis every shift of tailings prior to them being discharged to the TSF. In addition, Marlin collects data on slurry discharge to the TSF and water quality in the tailings supernatant and the seepage collection pond on a monthly basis. Review of 2010 - 2012 data from the discharge of the neutralization tanks to the TSF, the tailings impoundment and the seepage collection pond indicates that WAD cyanide was maintained below 0.5 mg/L with only some isolated exceedances.

Marlin conducts wildlife monitoring and no cyanide related mortalities have been reported.

Operations Practice 4.5: Implement measures to protect fish and wildlife from direct or indirect discharges of cyanide process solutions to surface water.

☑ in full compliance with

The operation is ☑ in substantial compliance with Operations Practice 4.5
☐ not in compliance with

Summarise the basis for this Finding/Deficiencies Identified:

The operation is in full compliance with Standard of Practice 4.5, requiring the operation implement measures to protect fish and wildlife from direct or indirect discharges of cyanide process solutions to surface water.

Marlin has authorization to discharge treated water from the TSF through the TSF decant system and after a second treatment from the WTP. The project was initially approved considering that future operations will require the discharge of treated process water during the rainy season to maintain the water balance in the TSF. Currently Marlin uses an INCO/\(\text{SO}_2\) neutralization treatment to treat the slurry to below 0.5 mg/L WAD cyanide. In May 2009, Marlin commissioned the operation of another treatment process (called in this report as the WTP) that uses oxidation by hydrogen peroxide followed by clarification and carbon columns. Treated water from the WTP is returned back to the TSF or discharged to surface waters, as necessary. Auditors reviewed current Marlin’s discharge permit issued by the Ministry of Environment and Natural Resources (MARN) of Guatemala (MARN Resolution “1501-2011/DIGARN/EC,/camil” approving Discharges from the TSF (June 8, 2011)).

Discharges from the decant system (Decant D7) and the WTP (D7) to surface waters are monitored when discharges occur as required by their discharge permit. Analytical results indicated that WAD cyanide concentrations were below 0.5 mg/L in all discharge samples collected.

In addition, Marlin has implemented a comprehensive surface water and groundwater monitoring program downstream and downgradient of the TSF. Review of the downstream surface water quality data indicates that free cyanide is below detection (<0.01 or <0.005 mg/L) at SW8 (first downstream monitoring location on Quebrada Seca) and at SW3 (compliance point for perennial water flow downstream of the TSF on the Riachuelo Quivichil). Review of the downgradient groundwater quality data also indicates that WAD cyanide is below detection (<0.01 or <0.005 mg/L) at G11, MW10, G13, MW3B (monitoring wells located downgradient of the TSF). Results also show that Marlin does not have any indirect discharge of cyanide.

[Signature]
Lead Auditor

January 2013
Report No. 12931 C1030
solutions to surface waters and that the concentration of free cyanide is below 0.022 mg/L at their downstream surface water compliance point (SW3).

Auditors reviewed analytical data (from allowed process water discharges, surface water and groundwater) and quarterly reports submitted to MARN on surface water quality and groundwater quality to verify compliance.

Operations Practice 4.6: Implement measures designed to manage seepage from cyanide facilities to protect the beneficial uses of groundwater.

☑ in full compliance with

☐ in substantial compliance with Operations Practice 4.6

☐ not in compliance with

Summarise the basis for this Finding/Deficiencies Identified:

The operation is in full compliance with Standard of Practice 4.6, requiring the operation implement measures designed to manage seepage from cyanide facilities to protect the beneficial uses of groundwater.

Marlin has implemented solution management and seepage control systems to protect groundwater below and downgradient of the operation. Montana Engineering Consultants (MEC) completed original design and provided construction oversight of the Phases 1 and 2a of the TSF. Montgomery Watson Harza (MWH) has provided the on-going engineering and QA/QC for the additional phases of the TSF. Expansion phases were completed using downstream construction process. Currently Marlin uses an INCO/SO$_2$ treatment process to treat the slurry to below 0.5 mg/L WAD cyanide prior to deposition in the TSF. In May 2009, Marlin commissioned the operation of another treatment process that uses oxidation by hydrogen peroxide followed by clarification and carbon columns.

The TSF has a phased earth and rockfill embankment. The embankment has an inclined, low-permeability core, a grout curtain to control seepage through the embankment foundation, internal drainage and a dam seepage collection system. The TSF is constructed over a bedrock foundation. The TSF is constructed with a main dam across the drainage and a saddle berm along the eastern flank. The main dam is constructed with a compacted low permeability core keyed into bedrock with a trench. The low permeability core is buttressed on the upstream slope by a toe cofferdam and rock shell fill. The low permeability core is buttressed on the downstream slope by a vertical rock filter drain, rock drain and rock shell fills. The vertical drain is connected at the base to a main drain that takes dam seepage out to a collection pond. The total dam height for the final 1962.5 m crest elevation is approximately 83 m. To limit seepage beneath the embankment and through the abutments, the grout curtain was installed to intercept zones of higher permeability foundation materials. The tailings design included detailed hydrogeologic characterization before and after the grouting program to define the permeability of the foundation and grout curtain.

The TSF embankment includes internal drainage to provide an engineered path to collect, route, and manage water infiltrating into, around, and through the dam. The drain system consists of a chimney drain installed along the downstream side of the dam’s low permeability core and a main drain constructed along the valley bottom from the base of the chimney drain to a discharge point at the toe of the dam. A seepage collection pond, located at the toe of the TSF embankment, intercept and store seepage from this main drain. Seepage collecting in the pond is pumped back to the TSF.

In accordance with the TSF Operating & Maintenance Plan, Marlin implements inspection and monitoring programs to ensure water management systems to manage seepage are functioning properly, and that water quality is being protected. Auditors reviewed inspection and monitoring records including annual dam inspection reports.

Marlin has not caused cyanide concentrations in groundwater to rise above levels protective of beneficial use. Review of the downgradient monitoring well data (including data from the 2 downgradient springs) from September 2009 to May 2012 indicates that WAD cyanide concentrations were below detection limit (<0.01 mg/L).
Marlin does not use mill tailings as underground backfill.

Operations Practice 4.7: Provide spill prevention or containment measures for process tanks and pipelines.

☑ in full compliance with

The operation is □ in substantial compliance with Operations Practice 4.7

☑ not in compliance with

Summarise the basis for this Finding/Deficiencies Identified:

The operation is in full compliance with Standard of Practice 4.7 requiring that the operation provide spill prevention or containment measures for process tanks and pipelines.

Marlin has spill prevention and containment measures for the cyanide storage areas (the mixing and storage tanks) and process areas. The process areas include the mill, the Merrill Crowe area, the leach tanks and the CCD area (including the neutralization tanks). Marlin has automated pumps within the containments to pump collected solutions into the process circuit. Sump levels are monitored from the control room. The containments are constructed of cast-in-place reinforced concrete. The initial certification audit concluded that the storage tank area is within concrete containments with sufficient capacity to contain 110% of the largest tank. The feasibility study prepared by Fluor Daniel provides containment volumes for each of these areas (as described in the initial certification report).

No changes or modifications have been made to the cyanide storage and process solution tanks or their containments since the initial certification audit except for the replacement of the lined wall of the secondary containment of the leach tanks with a reinforced concrete retaining wall. The capacity of this containment has not been modified.

Visual inspections of the secondary containments verified that there are no materials stored within the secondary containment to compromise their capacities.

The tailings slurry conveyance from the INCO/SO₂ neutralization system is via a HDPE pipeline within an excavated trench in bedrock to the TSF. The trench drains the slurry by gravity to the impoundment. The cyanide concentrations in the tailings slurry are maintained below 0.5 mg/L WAD cyanide as discussed in Section 4.4.2 (only some isolated exceedances were recorded during the 2010 - 2012 period).

No changes or modifications have been made to the cyanide pipeline secondary containments since the initial certification audit.

Operations Practice 4.8: Implement quality control/quality assurance procedures to confirm that cyanide facilities are constructed according to accepted engineering standards and specifications.

☑ in full compliance with

The operation is □ in substantial compliance with Operations Practice 4.8

☑ not in compliance with

Summarise the basis for this Finding/Deficiencies Identified:

The operation is in full compliance with Standard of Practice 4.8 requiring that operations implement QA/QC procedures to confirm that cyanide facilities are constructed according to accepted engineering standards and specifications.
New cyanide facilities and modifications made to the existing cyanide facilities since the initial certification audit include Phases 3 and 4 of the TSF; the construction of a TSF emergency spillway to be used for final operation, closure, and post-closure conditions at the Marlin Mine; and the replacement of the lined wall of the secondary containment of the leach tanks with a reinforced concrete retaining wall. The construction of the TSF emergency spillway began in September in 2011 and its completion date is estimated to be sometime in December 2012.

The QA/QC documentation for the new cyanide facilities and the modifications to the existing facilities indicates that construction activities, testing and inspections were performed in general accordance with design drawings and technical specifications. QA/QC programs addressed and documented the suitability of materials and adequacy of soil compaction for earthworks for cyanide facilities (as applicable to each project).

Marlin has retained the QA/QC documents listed in the initial certification audit, as well as the QA/QC documents for the new cyanide facilities and modifications to the existing cyanide facilities.

Marlin retained professional engineers to conduct QA/QC work for all cyanide facilities.

Operations Practice 4.9: Implement monitoring programs to evaluate the effects of cyanide use on wildlife, surface and groundwater quality.

- [x] in full compliance with
- [] in substantial compliance with Operations Practice 4.9
- [] not in compliance with

Summarise the basis for this Finding/Deficiencies Identified:

The operation is in full compliance with Standard of Practice 4.9 requiring that operations implement monitoring programs to evaluate the effects of cyanide use on wildlife, surface and groundwater quality.

Marlin has developed an environmental monitoring plan as well as monitoring and sampling procedures that meet Code requirements. The plan includes monitoring locations, sample parameter lists including cyanide species, frequency for sampling and analytical methods. The procedures specify the standard operating procedures for surface water, process water and groundwater including type of bottle, sample preservation and holding time requirements, field parameters to measure, chain of custody procedures and shipping instructions. Marlin has specific QA/QC programs. The plan and procedures were developed and are updated on a regular basis by qualified environmental scientists from the Environmental Department. In accordance with the sampling procedures, the samplers document weather and other conditions that may impact sample quality in the field forms.

Marlin has implemented monitoring programs at frequencies adequate to characterize the process water, surface water, groundwater and wildlife. Treated process water is monitored every two hours by Process Department, and monthly by the Environmental Department. Discharges of treated process water from the TSF through the decant system and from the WTP to surface waters are monitored on a weekly basis. Surface water monitoring varies depending on the frequency of the discharges from the site, but is generally conducted quarterly at SW3 and monthly at SW8. Groundwater samples are collected and analyzed on a quarterly or monthly basis depending of the location. The wildlife monitoring is conducted daily as part of the daily process inspections and monthly by the Environmental Department.
PRINCIPLE 5 – DECOMMISSIONING
Protect Communities and the Environment from Cyanide through Development and Implementation of Decommissioning Plans for Cyanide Facilities.

Decommissioning Practice 5.1: Plan and implement procedures for effective decommissioning of cyanide facilities to protect human health, wildlife and livestock.

☑ in full compliance with

The operation is ☐ in substantial compliance with ☐ not in compliance with Decommissioning Practice 5.1

Summarise the basis for this Finding/Deficiencies Identified:

The operation is in full compliance with Standard of Practice 5.1, which requires that the site plan and implement procedures for effective decommissioning of cyanide facilities to protect human health, wildlife and livestock.

Marlin has developed a comprehensive closure plan to decommission the cyanide facilities as documented in a document titled “Marlin Mine Updated Closure Plan April 2009” by MWH which was assessed as fully compliant as part of the original certification audit. This includes an implementation schedule.

The closure plan has been updated to reflect:

- the presence of the new filter plant used for dewatering tailings,
- for an extended mine life to 2017;
- extended monitoring period to 2027, and
- updated cost estimates.

Additional work is being undertaken at present to address consolidation of the tailings dam and direct revegetation of the tailings surface related to the dry closure of the tailings facility.

The final permanent spillway was under construction at the time of the audit.

Mine closure liabilities are externally re-evaluated every year and Goldcorp internally requires the closure plan to be updated every year as part of its Asset Retirement Obligation (ARO) Policy.

Decommissioning Practice 5.2: Establish an assurance mechanism capable of fully funding cyanide related decommissioning activities.

☑ in full compliance with

The operation is ☐ in substantial compliance with ☐ not in compliance with Decommissioning Practice 5.2

Summarise the basis for this Finding/Deficiencies Identified:
The operation is in full compliance with the Standard of Practice 5.2 which requires that the site establish an assurance mechanism capable of fully funding cyanide related decommissioning activities.

The Marlin internal cyanide facility decommissioning cost estimate is an estimate that fully funds completion of the work by a contractor. The cost estimate provides detail on the individual tasks and is presented by major facility (milling and processing facilities, TSF dam and TSF impoundment), closure task and by year. The current closure plan has updated cost estimates from the 2005 plan. The current estimated costs are detailed, based on quantities and unit prices where possible. The unit prices used in the cost estimate is outlined along with the basis for the unit prices derived from contractor quotes received by Marlin’s purchasing department.

Financial accounting procedures require that mine closure liabilities be re-evaluated every year and Goldcorp internally requires the closure plan to be updated every year as part of its Asset Retirement Obligation (ARO) Policy.

- 2009: USD 13 million.
- 2010 USD 17 million.
- 2011 USD 33 million (includes spillway costs and additional demolition costs for filter plant).

PRINCIPLE 6 – WORKER SAFETY

Protect Workers’ Health and Safety from Exposure to Cyanide

Worker Safety Practice 6.1: Identify potential cyanide exposure scenarios and take measures as necessary to eliminated, reduce and control them.

☑ in full compliance with

☐ in substantial compliance with ☐ not in compliance with Worker Safety Practice 6.1

Summarise the basis for this Finding/Deficiencies Identified:

The operation is in full compliance with Standard of Practice 6.1 which requires that the site has developed procedures describing how cyanide-related tasks such as unloading, mixing plant operations, entry into confined spaces, and equipment decontamination prior to maintenance should be conducted to minimise worker exposure.

Marlin has further developed the SOPs and plans that describe the management and operation of the cyanide facilities in the past three years since the initial certification audit. The cyanidation plant remains unchanged since the initial audit. Marlin’s safety management system has been upgraded to meet the requirements of OHSAS 18000, such as annual updating of risk assessments. These plans and procedures cover the safe operation of the entire cyanide management facilities.

Daily inspections are completed by the operators in areas where cyanide is used (e.g., mill and leach areas, tailings storage facility, water treatment plant, etc.). Inspections include safety and environmental concerns; reagent offload and storage areas; containment area and tank integrity; valve and pipe leakage detection; eye wash stations and showers; and others. Pre-work inspections for cyanide offloading, mixing and incineration of empty cyanide boxes as well as daily inspections for the mill, leach and tailings areas were reviewed. Identified deficiencies are noted and corrected or reported to supervisor for corrective action.

Monthly inspections are also conducted by the Maintenance Group. Marlin inspects its emergency response equipment monthly.

The auditors witnessed a cyanide mix, confirming that prework inspections are undertaken in accordance with the SOPs.

Marlin has developed a procedure called “Change Management Procedure” to be used when a change that can have the potential to adversely affect quality, health, safety, efficiency, community and security is proposed. This procedure includes procedures to evaluate the potential risk of the change, a risk assessment calculator, a change management checklist and a change management proposal form. The risk assessment should be conducted by the department affected by the change, involving the personnel affected by it. If the change has the potential to affect other departments, then representatives from those departments will be included in the change management evaluation and risk assessment. In addition to the Change Management Procedure, the process area has developed a procedure for process parameter change ("Cambios de Parámetros en el Proceso") that should also be considered to evaluate any change related to process plant parameters.

Marlin solicits worker input in developing and evaluating health and safety procedures in a number of ways including:

- direct communication to supervisors during 5-minute safety meetings.
- DELTA system

[Signature]

Lead Auditor
Safety Audit committees. Each area of the mine and plant has a safety committee comprising management and workers who meet weekly to address safety issues.

STOP system (Sistema de Trabajo con Observación Preventiva – System of work with preventative observation) whereby workers observe colleagues undertaking tasks and make critical observations on safety systems.

Worker Safety Practice 6.2: Operate and monitor cyanide facilities to protect worker health and safety and periodically evaluate the effectiveness of health and safety measures.

☑ in full compliance with

☐ in substantial compliance with

☐ not in compliance with

Summarise the basis for this Finding/Deficiencies Identified:

The operation is in full compliance with Standard of Practice 6.2 which requires that the site operate and monitor cyanide facilities to protect worker health and safety and periodically evaluate the effectiveness of health and safety measures.

pH controls are the same as for the original certification audit. pH is maintained between 11 and 11.5. The pH is continuously monitored at the process control room in the SCADA system and process areas (direct readout on pH monitors). Cyanide preparation checklists for pH and HCN values, and daily pH records measured by process operators in the leach tanks, mill area and neutralization plant were reviewed. Records are kept in the process control logs.

Marlin has identified areas and activities where workers may be exposed to cyanide and include PPE in the SOPs identified in Section 6.1. Risk assessments of the plant are updated annually in accordance with the OSHAS 18000 compliant safety management system. Areas of higher risk of elevated concentrations of HCN are identified by signage and barriers on site.

All HCN monitors are calibrated monthly, or as required for corrective maintenance using calibration gas on site. Records of calibration are maintained on site.

Warning signs are in areas where cyanide is used to alert workers that cyanide is present, that smoking, open flames, eating and drinking are not allowed and that the necessary cyanide-specific PPE must be worn. These areas include the cyanide unloading, storage and mixing areas; tanks and cyanide solution pipelines in the process areas; and neutralization plant. Verification was through visual inspection of the signs.

Mixing operators cordon off the mixing area to control foot traffic during mixing events. Signs describing first aid procedures in case a cyanide emergency are located at the mixing area. A mixing event was observed during the audit to verify that mixing procedures are followed.

Auditors verified that the showers and eyewash stations are functional and that the pressure in the eyewash stations is adequate. Shower and eye station’s inspection records were reviewed. Fire extinguishers are non-acidic sodium bicarbonate with nitrogen propellant gas and are inspected monthly by the Safety Department. Inspection records and tags of fire extinguishers were also reviewed.

Pipes containing cyanide are marked as containing cyanide solution and show flow direction inside the mill, leach and CCD areas. Signage for confined areas at the tank entry points has been placed. The signage is cleaned as part of the inspection procedures to ensure it is visible and legible.
First aid instructions for cyanide exposure, including MSDS, are in each first aid kit located in areas where reagent grade cyanide is handled (leach area, mill area, neutralization plant area) and in the medical facility. Verification was through visual inspection of the first aid procedures. The instructions are in Spanish, the language of the workforce.

Marlin has developed a procedure for Incident Report, Investigation, and Analysis (Procedimiento de Reporte, Investigación y Análisis de Incidentes). The procedure includes investigation procedures, reporting procedures, lines of responsibility during and after the incident, and follow-up procedures to check the status of corrective actions identified after an incident. This is now incorporated into the OSHAS 18000 safety management system.

A report on an incident regarding the loss of 630m3 barren cyanide solution from the refinery, caused by a hose connection failure, was reviewed. The incident resulted in a number of changes to procedures: hydraulic hoses inspected and replaced more frequently as part of planned maintenance; overflow pipe from refinery to Merrill Crowe area changed to larger diameter; control valve checklist updated and additional training given to personnel.

Worker Safety Practice 6.3: Develop and implement emergency response plans and procedures to respond to worker exposure to cyanide.

☐ in full compliance with

☐ in substantial compliance with

☐ not in compliance with

Summarise the basis for this Finding/Deficiencies Identified:

Marlin is in full compliance with Standard of Practice 6.3 that requires that the site develop and implement emergency response plans and procedures to respond to worker exposure to cyanide.

The number and location of cyanide antidote kits is the same as for the original certification audit in 2009 (13 in total, 8 in the clinic and 5 in the plant). Cyanide antidote kits are located at the leach area, mill area, neutralization plant area and medical facility. Cyanide antidote kits include oxygen, amyl nitrite, sodium thiosulfate, sodium nitrite, activated carbon and first aid kit. Resuscitators are located at the medical facility. Cyanide antidote kits are stored at the manufacturer’s recommended temperature.

Cyanide offloading, mixing and sampling operators carry a radio when they are performing their tasks to notify their supervisor or the control room, when required or in the event of an emergency. Marlin has established a radio channel to be used for emergency (Channel 3).

Cyanide antidote kits are inspected by the Safety Department at the process areas and by the doctors at the medical facility weekly. Signed inspection records are kept with the kits. Showers and eyewash stations are also inspected by the Safety Department to verify that they are functional and that the pressure in the eyewash stations is adequate. This check is also carried out by cyanide mixing personnel.

Marlin has developed written emergency response procedures for cyanide exposures. These plans are reviewed annually or after an emergency drill as necessary. The date of the next periodic update is stated as April 2013. These plans include the Cyanide ERP and task specific SOPs described in Section 6.1.1. Procedures described in the Cyanide ERP address cyanide physical properties, first aid procedures for different potential cyanide exposures (pulp spill, spill of solid cyanide, cyanide transportation accident, cyanide intoxication, etc.), location and use of emergency response equipment, incident contact information, spill clean-up and decontamination procedures, response measures and reporting requirements.

Marlin has on-site capabilities for cyanide-related fire fighting, medical emergency, and hazmat clean-up. According to site personnel and given the location of this mine, these emergency response capabilities are
the best available in the area. Marlin has, however, made formalized arrangement with the Huehuetenango Hospital to assist workers exposed to cyanide, if required. The Cyanide ERP describes procedures to transport workers exposed to cyanide to the Huehuetenango Hospital as well as hospital’s contact information.

The Cyanide ERP describes procedures to transport workers exposed to cyanide to the Huehuetenango Hospital. One of the on-site doctors will accompany the worker exposed to cyanide to the hospital. Cyanide antidote available at Marlin will also be transported with the patient to the hospital.

Marlin has made formalized arrangement with the Huehuetenango Hospital to assist workers exposed to cyanide, if required. The letter certifying the arrangement with the Huehuetenango Hospital states that the hospital has adequate, qualified staff, equipment and expertise to respond to cyanide exposures. Since the original certification audit and addition 2 courses have been run to train local medical staff in the treatment of cyanide exposures. Additional training has been given to government rescue agencies (18/06/12) and community leader (train the trainer courses for emergency response 21/06/12).

Marlin conducts mock emergency drills based on likely cyanide release/exposure scenarios to test the response procedure and incorporates lessons learned from the mock drills into its response planning. General practice mock drills are performed quarterly.

A mock drill of the dropping of a cyanide box on 02/05/11 resulted in a number of updates to procedures including modifications to call-out procedures to unify system for different types of emergencies. This drill was repeated in 2012 to test the new modifications.
PRINCIPLE 7 – EMERGENCY RESPONSE

Protect Communities and the Environment through the Development of Emergency Response Strategies and Capabilities

Emergency Response Practice 7.1: Prepare detailed emergency response plans for potential cyanide releases.

☑ in full compliance with

☐ in substantial compliance with

☐ not in compliance with

Emergency Response Practice 7.1

Summarise the basis for this Finding/Deficiencies Identified:

Marlin is in full compliance with Standard of Practice 7.1 which requires that the site prepare detailed emergency response plans for potential cyanide releases.

The emergency response plan reviewed during the recertification audit is essentially the same plan that was available at the time of the certification audit, which has been updated in the past three years. Marlin has developed several plans and SOPs that address emergency response. The documents include: Cyanide ERP, ER Master Plan, EPP for the TSF and task-specific SOPs described in Section 6.1.1. The ERPs have individual chapters that pertain directly to cyanide related emergencies. These plans contain sections related to procedures for the handling of sodium cyanide, emergency procedures for cyanide transportation accident, action plans for the tailings dam failure, procedures for cyanide-related fire fighting and cyanide spill clean-up and decontamination procedures. Verification was by review of these documents and interviews with the environmental and safety personnel.

The ERP considers potential cyanide failure scenarios appropriate for its site-specific environmental and operating circumstances. The response plan to overtopping and other tailings dam related emergencies has been updated in 2012. The revised plan identifies the name and contact information of the leaders of the communities located downstream of the dam that may be affected in case of a tailings dam failure. Marlin has recently implemented an early warning system in a number of villages downstream of the dam involving water level indicators and VHF radio system. The ERP includes information on escape routes and muster points for communities downstream of the dam.

Planning for response to transportation-related emergencies is incorporated into the plan and relies on Dupont’s Guatemala supply chain which has been fully certified under the code, as well as site based response and third party responders.

The ERPs describe in appropriate detail the response actions required for clearing site personnel from the area of exposure, use of cyanide antidotes, first aid measures for cyanide exposure to workers, and procedures for reporting to government agencies, community leaders, Huehuetenango Hospital and other off-site first responders (e.g., San Marcos and Huehuetenango firemen). The site has adequate secondary containment to prevent off property cyanide releases.

The Cyanide ERP describes cyanide information, potential health effects, potential exposures to cyanide, cyanide first aid procedures, procedures for cyanide spill clean-up and neutralization, and emergency communication procedures. In addition, Marlin has developed procedures for fire and explosion of cyanide and environmental monitoring after a cyanide spill or release.

The Safety Department keeps updated a list with the name and contact information of the onsite and offsite first responders (such as firemen, hospitals, Marlin’s managers, brigade members, police, government agencies, etc.). In addition, the ERP has been revised for the tailings dam to incorporate changes in the tailings impoundment design and rerun the dam break model (revised version from April 2009 was
reviewed). The revised plan identifies the name and contact information of the leaders of the communities located downstream of the dam that may be affected in case of a tailings dam failure. Marlin has recently implemented an early warning system in a number of villages downstream of the dam involving water level indicators and VHF radio system. The ERP includes information on escape routes and muster points for communities downstream of the dam.

Emergency Response

Practice 7.2: Involve site personnel and stakeholders in the planning process.

- ☑ in full compliance with

The operation is

- □ in substantial compliance with
- □ not in compliance with

Emergency Response Practice 7.2

Summarise the basis for this Finding/Deficiencies Identified:

Marlin is in full compliance with Standard of Practice 7.2 which requires that the site involve site personnel and stakeholders in the planning process.

Marlin discusses the implementation of new SOPs and other safety-related issues during safety meetings. Marlin provides the opportunity for employees to communicate issues of concern during those meetings. Safety meetings are documented. In addition, Marlin has met with outside responders and local authorities, and communicated to them their roles in case of a cyanide-related emergency. Marlin in collaboration with DuPont has provided cyanide training to outside firemen along the cyanide transportation route, doctors from the Huehuetenango and Sipacapa Hospitals, Tejutla Red Cross, and others. Community leaders were involved in the planning of suitable evacuation routes and muster points based on the dam break analysis for the tailings dam. Meeting and training records were reviewed to verify compliance with this item.

Marlin has provided cyanide-related training to outside firemen, local authorities, off-site doctors and people from the communities throughout the 3 year period since the original certification audit. In addition, the Sustainable Development Department personnel have provided training in emergency communication and evacuation procedures to the leaders of the communities that may be affected in case of a cyanide transportation accident or tailings dam failure (such as the Siete Platos and Salitre communities). The mine also keeps and updated list of dwellings and mobile phone numbers of potentially affected communities. Verification was through interview with the Environment Manager and review of training records and training materials. Marlin also provides information on cyanide in written format (i.e., reports available on-line to public; flyers on “How Much We Know about Cyanide”; and submittals to local agencies, community committees and regulatory agencies) and oral form (i.e., workshops provided to communities). Marlin keeps updated a stakeholder contact information list in its Cyanide ERP.

Marlin has provided cyanide-related training to fire services, local authorities, off-site doctors and people from the communities in regularly throughout the past 3 years since the original certification audit. Marlin has a formal arrangement with the Huehuetenango Hospital to treat workers exposed to cyanide, if required. Letter that certifies the agreement was reviewed. In addition, the Sustainable Development Department personnel has provided training in emergency communication and evacuation procedures to the leaders of the communities that may be affected in case of a cyanide transportation accident or of a tailings dam failure (such as the Siete Platos and Salitre communities). Verification was through interview with the Sustainable Development Manager, Environment Manager and review of training records. Marlin keeps a stakeholder contact information list in its ERPs.

Off-site responders who will respond to a cyanide emergency along the cyanide transportation route received training in first aid procedures related to hazardous materials. The training is certified by OFDA (Office of the U.S. for Foreign Disaster Assistance) and by the National Coordinator for Disaster Reduction (CONRED) in Guatemala. Training included a cyanide spill mock drill, including the use of chemical...
protective suits. Dupont recently (20/06/2012) carried out cyanide emergency response training for local medical staff.

Marlin keeps a stakeholder contact information list in its Communication Procedure for notifying governmental entities, cyanide supplier, air services, off-site medical facilities, local police and fire departments. In addition, the procedure includes contact information for notifying community representatives from San Marcos, San Miguel, Siete Platos and Salitre and for communication with the media. Marlin engages in communication with the stakeholders through training and conductance of mock drills. Some of the members of Marlin’s ERT are also citizens of local communities.

Emergency Response Practice 7.3: Designate appropriate personnel and commit necessary equipment and resources for emergency response.

- in full compliance with
- in substantial compliance with
- not in compliance with

The operation is in full compliance with Emergency Response Practice 7.3

Summarise the basis for this Finding/Deficiencies Identified:

Marlin is in full compliance with Standard of Practice 7.3 which requires that the site designate appropriate personnel and commit necessary equipment and resources for emergency response.

The cyanide related elements of the emergency response plan contains the following:

a) The ER Master Plan and the emergency call procedure (“Llamada de Emergencia”) describe the responsibilities and level of authority of emergency response coordinators for all site emergencies, including responsibilities of the Environmental and Safety Departments and Marlin General Manager.

b) The Safety Department has developed a list of the Emergency Response Team including inside and outside firemen and brigade members (e.g., San Miguel, Huehuetenango and Totonicapan, first responders, government agencies, local police, etc.). In addition, the Safety Department has a list describing the persons to contact in case of a cyanide incident or emergency (e.g., cyanide spill inside the mine or during transportation, tailings dam failure, cyanide structure failures, etc.) including DuPont contact information in Chile, Mexico and the U.S.

c) Marlin has developed a cyanide code training plan (“Procedimiento y Plan De Entrenamiento del Código del Cianuro PCIC-01”). The plan describes the training level that an employee who works with cyanide needs to receive based on the employee’s exposure to cyanide; procedures to evaluate and revise the SOPs; and training evaluation procedures. The training includes employees in general, subcontractors, and emergency responders. The plan will be revised annually.

d) The Safety Department has an updated list of emergency contact numbers. This list is described in the ER Master Plan. The list is also located at the communication centre. Call-out procedures are described in the emergency call procedure (“Llamada de Emergencia”).

e) The Cyanide ERP, the ER Master Plan and the emergency call procedure describe the responsibilities and level of authority of the emergency response coordinators and team members in case of an emergency.

f) The Cyanide ERP contains a list of the emergency response equipment (cyanide antidote kits, shower and eyewash stations, chemical protective suits, spill recover equipment, etc.) The plan also includes a map with the on-site location of the ER equipment.

g) Safety personnel conduct monthly inspections of the emergency response equipment. Cyanide antidote kits are inspected weekly at the process area by the safety personnel and daily at the medical
facility by the on-site doctors. Other ER equipment (chemical protective suits, spill recovery equipment, etc.) is also inspected weekly by the Safety and Environmental Departments. Inspections records for the ER equipment were reviewed.

h) The cyanide ERP and the EPP for the TSF describe the role of outside responders or communities (Huehuetenango Hospital, Salitre and Siete Platos communities, etc.).

Marlin has provided cyanide-related training to outside firemen, local authorities, off-site doctors and people from the communities annually since the original certification in 2009. Marlin has a formal arrangement with the Huehuetenango Hospital to treat workers exposed to cyanide, if required. Letter that certifies the agreement was reviewed. In addition, the environmental and sustainable development department's personnel has provided training in emergency communication and evacuation procedures to the leaders of the communities that may be affected in case of a cyanide transportation accident or of a tailings dam failure (such as the Siete Platos and Salitre communities). Marlin has also implemented evacuation and muster systems for communities downstream of the tailings dam, in consultation with these potentially affected communities. Verification was through interview with the Environment Manager and review of training records. Marlin keeps a stakeholder contact information list in its ERPs.

Emergency Response Practice 7.4: Develop procedures for internal and external emergency notification and reporting.

- in full compliance with
- in substantial compliance with
- not in compliance with

Emergency Response Practice 7.4

Summarise the basis for this Finding/Deficiencies Identified:

Marlin is in full compliance with Standard of Practice 7.4 which requires that the site develop procedures for internal and external emergency notification and reporting.

The plans and procedure include procedures and contact information for notifying management, communities, governmental agencies (e.g., CONRED, the Ministry of Environment and Natural Resources (MARN), the Ministry of Energy and Mines (MEM), cyanide supplier, air services, off-site medical facilities (Huehuetenango Hospital), local police and fire departments.

The mine, in conjunction with CONRED has recently implanted a system whereby community leaders are given emergency radios (since mobile phone contact information changes very rapidly). A system is in place to verify that the radios are working correctly with weekly checks.

The ERP includes procedures and contact information for notifying community representatives from San Marcos, San Miguel, Huehuetenango, Irrigation System Leader, Siete Platos and Salitre and for communication with the media. Marlin implements Goldcorp corporate systems for communication with the media. Marlin has recently implemented a GIS system to identify the extent of a potential emergency and potentially affected communities. The GIS system is linked to the contact information database and displays contact information as required. It also shows potential emergency response resources such as hardware stores.

Emergency Response Practice 7.5:

Incorporate in response plans and remediation measures monitoring elements that account for the additional hazards of using cyanide treatment chemicals.

- in full compliance with
The operation is ☑ in substantial compliance with Emergency Response Practice 7.5
☐ not in compliance with

Summarise the basis for this Finding/Deficiencies Identified:

Marlin is in full compliance with Standard of Practice 7.5 which requires that the site incorporate in response plans and remediation measures monitoring elements that account for the additional hazards of using cyanide treatment chemicals.

The ERP has not changed significantly since the original certification audit in 2009, although improvements have been made with enhanced communication systems and minor adjustments based on the results of mock emergency drills.

a) Marlin has written procedures that require cyanide spills be shoveled and swept into a suitable container and to keep the spilled material dry. The spill area must be flushed with a dilute solution of sodium hypochlorite. Spilled cyanide solutions within the process plants will be returned to the process circuit. Emergency containment structures would be constructed, if necessary, to minimize the extent of the release and prevent it from reaching natural drainages.

b) The Cyanide ERP has written procedures for decontamination of soils.

c) The Cyanide ERP specifies where contaminated soils should be properly disposed of. In addition, the plan includes decontamination and sampling procedures for soils and clean-up materials.

d) A release from the operation cannot adversely impact Marlin’s water supply source (Well MW-5) because this source is located upgradient of the mine facilities. Marlin will supply drinking water to the affected communities in case of an emergency cyanide release from Marlin that would negatively impact the drinking water supply. Marlin has installed a reverse osmosis plant to produce potable water on site.

The Cyanide ERP specifically prohibits the use of chemicals such as sodium hypochlorite, ferrous sulfate and hydrogen peroxide in water bodies as an action to remediate a cyanide spill. These prohibitions are highlighted in the ERP text.

The Cyanide ERP (Section 13) requires that contaminated water and/or soils are monitored after a cyanide spill and describes where contaminated soils and clean-up material will be disposed of. The soil monitoring procedure (“Muestreo de Suelos”) describes sampling methodologies, parameters, and sample location and depth. Cyanide ERP describes the final cyanide concentration that will be allowed in residual soils as evidence that the spill has been completely cleaned-up.

Emergency Response Practice 7.6: Periodically evaluate response procedures and capabilities and revise them as needed.

☑ in full compliance with

The operation is ☐ in substantial compliance with Emergency Response Practice 7.6
☐ not in compliance with

Summarise the basis for this Finding/Deficiencies Identified:

Marlin is in full compliance with Standard of Practice 7.6 which requires that the site periodically evaluate response procedures and capabilities and revises them as needed.

ERP has been reviewed quarterly and following a mock drill or incident as needed. The auditor verified that the Cyanide ERP and the ER Master Plan have been revised. While the overall structure of the plan has
remained the same as for the ERP reviewed in 2009, the content has been updated as appropriate, such as the addition of contact information downstream of the tailings dam and the implementation the GIS system.

Marlin conducts 4 mock emergency drills per year including some based on likely cyanide release/exposure scenarios to test the response procedure and incorporate lessons learned from the mock drills into its response planning. Reports of mock drills from 2010, 2011 and 2012 were reviewed.

A drill of the dropping of a cyanide box on 02/05/11 resulted in a number of updates to procedures including modifications to call-out procedures to unify system for different types of emergencies. This drill was repeated in 2012 to test the new modifications.

The auditor verified that the Cyanide ERP and the ER Master Plan have been revised. Review documentation of the mock drills was kept on file and findings, such as simplification of communications between different groups involved in an emergency response, implemented into the emergency response plans.
PRINCIPLE 8 – TRAINING

Train Workers and Emergency Response Personnel to Manage Cyanide in a Safe and Environmentally Protective Manner

<table>
<thead>
<tr>
<th>Training Practice 8.1:</th>
<th>Train workers to understand the hazards associated with cyanide use.</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ in full compliance with</td>
<td></td>
</tr>
<tr>
<td>☐ in substantial compliance with</td>
<td></td>
</tr>
<tr>
<td>☐ not in compliance with</td>
<td></td>
</tr>
</tbody>
</table>

The operation is ☑ in substantial compliance with Training Practice 8.1

Summarise the basis for this Finding/Deficiencies Identified:

Marlin is in full compliance with Standard of Practice 8.1, which requires that the site train workers to understand the hazards associated with cyanide use.

All new employees and subcontractors who may be performing cyanide use-related tasks are required to complete cyanide training. The cyanide code training plan (“Procedimiento y Plan De Entrenamiento del Código del Cianuro PCIC-01”) describes the level of training required by employee based on the employee’s potential exposure and risk to cyanide. Cyanide training program consists of 3 modules: Module 1 for minimum cyanide exposure (e.g., administration people), Module 2 for employees with medium risk of exposure to cyanide (e.g., subcontractors working at the TSF, sustainable development personnel, etc.) and Module 3 for employees with higher risk to cyanide exposure (e.g., process plant operators, doctors, first responders, maintenance and safety personnel, subcontractors working in the process area, etc.). The number of staff trained in Module 3 has increased in 2012 as a wider range of plant staff are now included in the training. In addition to the general training, all employees working in process areas are required to undergo task-specific training (e.g., cyanide preparation procedure and other SOPs described in Section 6.1.1).

General cyanide training courses include: cyanide toxicology, cyanide handling and storage, symptoms of cyanide exposure, cyanide antidote, cyanide-related emergency response procedures, cyanide spill response, fire extinguisher, PPE, use of emergency response equipment, decontamination of contaminated soils and others.

Records of the cyanide general training and task-specific training were reviewed to verify compliance with this item. In addition, Marlin operators were randomly interviewed to verify their level of training and understanding of symptoms of cyanide exposure, first aid procedures and location of emergency equipment (i.e. amyl nitrite and oxygen). Interviews with a number of staff around the plant demonstrated a high level of understanding of cyanide hazard awareness and emergency response.

Marlin provides cyanide-related refresher training to all employees who may be exposed to cyanide, including process operators, inside and outside first responders, doctors and subcontractors. Refresher training records were reviewed during audit (there were 3951 attendees to refresher training courses during 2011, equivalent to 647 man-days of training).

Marlin retains records of the cyanide training (general and task-specific training) provided to all employees (e.g., process operators, first responders, on-site doctors and nurses, mine supervisors and others). Training records are filed by employee and include name of the trainer, date of training, topics covered during training sessions and employee’s understanding of the training (e.g., quiz results). In addition, records from observations conducted to operators who perform cyanide-related tasks by their supervisors are filed with training records. The records are retained on site in 8 folders for 2011-12.
Training Practice 8.2: Train appropriate personnel to operate the facility according to systems and procedures that protect human health, the community and the environment.

☑️ in full compliance with

☐ in substantial compliance with

☐ not in compliance with

Training Practice 8.2

Summarise the basis for this Finding/Deficiencies Identified:

Marlin is in full compliance with Standard of Practice 8.2 which requires that the site train appropriate personnel to operate the facility according to systems and procedures that protect human health, the community and the environment.

The training measures described in the 2009 certification audit have been maintained throughout the 3 year certification period. All personnel in job positions that involve the use of cyanide and cyanide management receive training on how to perform their assigned tasks with minimum risk to worker health and safety. Individual training is provided for each specific task an operator will perform related to cyanide management. Task-specific training include: cyanide offloading; removal of sodium cyanide IBCs from the warehouse; incineration of sodium cyanide boxes and bags; plant start-up procedure; preparation of 20% liquid sodium cyanide; operations of the leach circuit, gravity circuit and Merrill Crowe systems; operation of the cyanide neutralization system; dosing of 20% sodium cyanide in process plant; failure of seepage collector; sampling; tank overtopping; sodium cyanide neutralization in spills applying 4.5% sodium hypochlorite; weekly inspections to the cyanide process facilities by operations personnel; personnel entering a confined space; personnel entering the SAG mill and balls; emergency equipment (generators in operation); cyanide emergency response/first aid procedures and others. In addition, operators are observed by their supervisor to evaluate effectiveness of cyanide training on a regular basis. Training and observation records were reviewed to verify compliance with this item.

Training elements (SOPs and general cyanide training) required for each specific job are identified in an Excel matrix. The Excel matrix is a table that is filled out by the Training and Process Departments to verify compliance with training requirements. Auditors reviewed task-specific training records and employee’s training requirements described in the Excel matrix and in the cyanide code training plan (“Procedimiento y Plan De Entrenamiento del Código del Cianuro PCIC-01”).

Cyanide training material was reviewed by DuPont. DuPont has continued to provide support in training to the Training Team (including Safety personnel, process supervisors, doctors, brigade members, firemen, inside and outside responders).

Prior to working with cyanide, all personnel in job positions that involve the use of cyanide and cyanide management receive training on how to perform their assigned tasks with minimum risk to worker health and safety. Task-specific training include cyanide toxicology, cyanide handling and storage, symptoms of cyanide exposure, cyanide antidote, cyanide-related emergency response procedures, cyanide spill response, fire extinguisher, PPE, use of emergency response equipment, decontamination of contaminated soils and others.

Marlin requires and provides annual refresher training in cyanide (e.g., training modules 1, 2, and 3 described in Section 8.1.1). In addition, cyanide-related health and safety topics and changes in cyanide management SOPs, if any, are discussed during safety meetings at process areas. Operators who perform cyanide-related tasks are observed on a regular basis by their supervisors to evaluate their effectiveness of cyanide training. SOP related refresher training is provided to them as required. Records of refresher training and daily meetings (where cyanide exposure scenarios were discussed) were reviewed.

Marlin requires written tests to evaluate the effectiveness of cyanide training, and oral test for those workers that cannot write. In addition, operators who perform cyanide-related tasks are observed on a regular basis.

Lead Auditor

[Signature]

January 2013
Report No. 12931 C1030
by their supervisors. Records of written tests are retained under the employee’s training file. Test and observation records were reviewed by auditors to verify compliance.

Marlin retains records of the cyanide training (general and task-specific training) provided to all employees (e.g., process operators, first responders, on-site doctors and nurses, mine supervisors and others). Training records are filed by employee and include name of the trainer, date of training, topics covered during training sessions and employee’s understanding of the training (e.g., quiz results). In addition, records from observations conducted to operators who perform cyanide-related tasks by their supervisors are filed with training records.

Training Practice 8.3: Train appropriate workers and personnel to respond to worker exposures and environmental releases of cyanide.

☑ in full compliance with

☑ in substantial compliance with

☐ not in compliance with

Training Practice 8.3

Summarise the basis for this Finding/Deficiencies Identified:

Marlin is in full compliance with Standard of Practice 8.3 which requires that the site train appropriate workers and personnel to respond to worker exposures and environmental releases of cyanide.

Marlin has trained all cyanide unloading, mixing, production and maintenance personnel in cyanide handling and storage, cyanide safety, cyanide contamination routes, symptoms of cyanide exposure, cyanide-related emergency response procedures, cyanide spill response (for dry and wet spills), decontamination procedures, fire extinguisher use, cyanide related PPE, use of the hand-held HCN meters, cyanide kit management, and emergency communication procedures. Although the cyanide unloading, mixing, production and maintenance operators are trained in decontamination, the environmental personnel will be responsible for conducting clean-up and decontamination activities in case of a spill. The Environmental team has received the appropriate decontamination training, including the use of necessary spill response equipment and use of the hand – held HCN meters. The unloading, production, maintenance, and environmental personnel have participated in mock drills.

The emergency response team has received training in cyanide handling and storage, cyanide safety, cyanide contamination routes, symptoms of cyanide exposure, cyanide-related emergency response procedures, cyanide kit management, cyanide spill response, decontamination of contaminated soils, collapse structure rescue procedures including tailings dam failure, cyanide fire fighting, use of emergency response equipment (including appropriate use of chemical protective suits), hazardous materials incident response and use of the hand – held HCN meters. The Emergency Response Coordinators receive the same training as the members of the Emergency Response Team. Some of the coordinators are also ERT trainers.

Marlin provides cyanide-related refresher training to all employees who may be exposed to cyanide, including process operators, inside and outside first responders, doctors and subcontractors. Refresher training records were reviewed during audit. In addition, Marlin discusses cyanide-related health and safety issues and changes in cyanide management SOPs, if any, at safety meetings.

General practice mock drills are performed quarterly. Mock emergency drills based on likely cyanide release/exposure scenarios are performed biannually. Reports of mock drills from 2010, 2011 and 2012 were reviewed. After each mock emergency drill, debriefing sessions are held to review and discuss the results of the drill. Where necessary modifications to procedures are made and the modifications communicated to the work force through training.
A drill of the dropping of a cyanide box on 02/05/11 resulted in a number of updates to procedures including modifications to call-out procedures to unify system for different types of emergencies. This drill was repeated in 2012 to test the new modifications and the effectiveness of training in the new procedures.

Marlin retains records of the cyanide training (general and task-specific training) provided to all employees (e.g., process operators, first responders, on-site doctors and nurses, mine supervisors and others). Training records are filed by employee and include name of the trainer, date of training, topics covered during training sessions and employee’s understanding of the training (e.g., quiz results). In addition, records from observations conducted to operators who perform cyanide-related tasks by their supervisors are filed with training records. Verification was by interview with process and training personnel and review of training records.
PRINCIPLE 9 – DIALOGUE
Engage in Public Consultation and Disclosure

Dialogue Practice 9.1: Provide stakeholders the opportunity to communicate issues of concern.
☑ in full compliance with

The operation is ☐ in substantial compliance with ☑ Dialogue Practice 9.1
☐ not in compliance with

Summarise the basis for this Finding/Deficiencies Identified:

Marlin is in full compliance with Standard of Practice 9.1 which requires that the operation provide stakeholders the opportunity to communicate issues of concern.

The 2009 certification audit report identifies numerous ways in which Marlin provides avenues of opportunity for stakeholders to communicate issues of concern regarding the cyanide use and management at the mine. This has been maintained and extended through the 3 year recertification period.

During stakeholder mine visits Marlin actively solicits feedback through a system of questions before and after the visits. The ‘before’ questions help to identify community areas of concern and the ‘after’ questions seek to verify if the concerns had been addressed. Of the several hundred Q&A forms reviewed a very large majority were positive after the visit.

Marlin undertakes a collaborative sampling programme with local communities and the University of San Carlos, Guatemala City to engender trust in the monitoring programme and reported results.

Marlin’s formal complaints procedure has been extended to address verbal as well as written complaints.

Dialogue Practice 9.2: Initiate dialogue describing cyanide management procedures and responsively address identified concerns.
☑ in full compliance with

The operation is ☐ in substantial compliance with ☑ Dialogue Practice 9.2
☐ not in compliance with

Summarise the basis for this Finding/Deficiencies Identified:

Marlin is in full compliance with Standard of Practice 9.2 which requires that the site initiate dialogue describing cyanide management procedures and responsively address identified concerns.

The 2009 certification audit report identifies numerous ways in which Marlin provides avenues of opportunity for stakeholders to communicate issues of concern regarding the cyanide use and management at the mine. This has been maintained and extended through the 3 year recertification period.

Marlin sponsors and conducts community sessions where the members of the general public are encouraged to attend and discuss issues related to the mining operation including the use of cyanide, cyanide neutralization plant, and tailings storage facility. In addition, leaders and first responders of the communities that may be potentially affected in case of an accident during cyanide transportation or a tailings dam failure have been trained in emergency procedures including communication procedures and evacuation routes, in Spanish, Mam and Sipacapense (two languages spoken by nearby communities).
Dialogue Practice 9.3: Make appropriate operational and environmental information regarding cyanide available to stakeholders.

☑ in full compliance with

The operation is
☐ in substantial compliance with
☐ not in compliance with

Summarise the basis for this Finding/Deficiencies Identified:

Marlin is in full compliance with Standard of Practice 9.3 which requires that the site make appropriate operational and environmental information regarding cyanide available to stakeholders.

Marlin has provided written description to a variety of stakeholders in several formats, including flyers on “How Much We Know about Cyanide” which are widely distributed in communities near the project and technical report available on-line at Marlin corporate website.

Information on cyanide management is available in the introduction section (pp1-2) of the 2009 certification summary audit report on the ICMI website.

Marlin has provided information to communities (e.g., Salitre and Siete Platos communities) on emergency procedures in case of an accident during cyanide transportation or a tailings dam failure. Training records and materials were reviewed.

Marlin has maintained the systems for making cyanide related incidents publicly available, in place at the time of the 2009 certification audit. Verification was by interview with the Environmental Manager and records review. The ER Master Plan states that local and regional authorities will be notified in the event the following occurs: 1) a significant incident or accident involving a hazardous substance that occurs outside of the mine boundary; 2) spill or leak of a hazardous substance that occurs within the mine boundary but migrates or is likely to migrate offsite; and 3) spill that occurs on-site, but exceeds the reportable quantity (RQ) described in the plan. Marlin’s Master Plan defines the RQ as the United States Environmental Protection Agency reportable quantity for a hazardous substance. The RQ for sodium cyanide is 10 pounds.

Marlin will inform the applicable Municipalities and voluntary fire units, CONRED, MARN and MEM, as needed. The information from MARN and MEM is available to the public. Marlin in coordination with local agencies will notify the communities and water consumers downstream of the release/spill site if this occurs near a watercourse.

In addition, the Communication Procedure defines internal and external communication procedures needed in the case of an emergency spill/release including lines of responsibilities.

a) As described in the ER Master Plan, in case of any worker fatalities or critical injuries Marlin shall immediately send a notice of occurrence to the corresponding Guatemalan authorities (CONRED, MARN and MEM). The information from MARN and MEM is available to the public.

b) Marlin will provide information on cyanide releases off the mine site (cyanide solution or releases of solid sodium cyanide (transportation)). Notification procedures are described in Marlin’s ER Mater Plan, including a phone number list to contact CONRED, MARN, MEM, and community authorities in case of an emergency.

c) Marlin will provide information on cyanide releases on or off the mine site resulting in significant adverse effects to health or the environment. Marlin’s communication procedure provides the phone numbers to contact CONRED, MARN, MEM, and community authorities.

d) As previously mentioned, local and regional authorities will be notified within 24 hours in the event the following occurs: 1) a significant incident or accident involving a hazardous substance that occurs
outside of the mine boundary; 2) spill or leak of a hazardous substance that occurs within the mine boundary but migrates or is likely to migrate offsite; and 3) spill that occurs on-site, but exceeds the RQ for the substance. This also applies to question (e)
Report Signature Page

Ivon Aguinaga
Gold Mining Technical Specialist

Alistair Cadden
Lead Auditor and Gold Mining Technical Specialist

Date: 22nd January 2013

AC/IA/ia

Golder Associates Argentina S.A, Caseros 34 (Norte) - J5400ERB, San Juan - ARGENTINA

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation.
At Golder Associates we strive to be the most respected global company providing consulting, design, and construction services in earth, environment, and related areas of energy. Employee owned since our formation in 1960, our focus, unique culture and operating environment offer opportunities and the freedom to excel, which attracts the leading specialists in our fields. Golder professionals take the time to build an understanding of client needs and of the specific environments in which they operate. We continue to expand our technical capabilities and have experienced steady growth with employees who operate from offices located throughout Africa, Asia, Australasia, Europe, North America, and South America.