SUMMARY AUDIT REPORT

INTERNATIONAL CYANIDE MANAGEMENT CODE
GOLD MINING OPERATION VERIFICATION AUDIT

ROUND MOUNTAIN GOLD CORPORATION – SMOKY VALLEY
COMMON OPERATION, NEVADA USA

Submitted to
INTERNATIONAL CYANIDE MANAGEMENT INSTITUTE
1400 I STREET, N.W., SUITE 500
WASHINGTON, D.C. 20005

and

ROUND MOUNTAIN GOLD CORPORATION
(A KINROSS GOLD CORPORATION &
BARRICK GOLD CORPORATION COMPANY)
#1, SMOKY VALLEY MINE RD. / PO BOX 480
ROUND MOUNTAIN, NEVADA 89045

Prepared by
VISUS CONSULTING GROUP, INC.
www.visuscorp.com

VISUS CONSULTING GROUP, INC.

FINAL
JANUARY 8, 2014

Balancing Your Resources
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 General</td>
<td>1</td>
</tr>
<tr>
<td>0.1 Operation Contact Information</td>
<td>1</td>
</tr>
<tr>
<td>0.2 Location and Description of Operation</td>
<td>1</td>
</tr>
<tr>
<td>0.3 Cyanide Facilities</td>
<td>3</td>
</tr>
<tr>
<td>0.4 Auditor Information</td>
<td>6</td>
</tr>
<tr>
<td>0.5 Audit Findings</td>
<td>7</td>
</tr>
<tr>
<td>0.6 Summary of ICMC Principles and Standards of Practice</td>
<td>8</td>
</tr>
<tr>
<td>1.0 Production</td>
<td>10</td>
</tr>
<tr>
<td>Standard of Practice 1.1</td>
<td>10</td>
</tr>
<tr>
<td>2.0 Transportation</td>
<td>11</td>
</tr>
<tr>
<td>Standard of Practice 2.1</td>
<td>11</td>
</tr>
<tr>
<td>Standard of Practice 2.2</td>
<td>12</td>
</tr>
<tr>
<td>3.0 Handling and Storage</td>
<td>13</td>
</tr>
<tr>
<td>Standard of Practice 3.1</td>
<td>13</td>
</tr>
<tr>
<td>Standard of Practice 3.2</td>
<td>14</td>
</tr>
<tr>
<td>4.0 Operations</td>
<td>16</td>
</tr>
<tr>
<td>Standard of Practice 4.1</td>
<td>16</td>
</tr>
<tr>
<td>Standard of Practice 4.2</td>
<td>18</td>
</tr>
<tr>
<td>Standard of Practice 4.3</td>
<td>18</td>
</tr>
<tr>
<td>Standard of Practice 4.4</td>
<td>19</td>
</tr>
<tr>
<td>Standard of Practice 4.5</td>
<td>21</td>
</tr>
<tr>
<td>Standard of Practice 4.6</td>
<td>21</td>
</tr>
<tr>
<td>Standard of Practice 4.7</td>
<td>22</td>
</tr>
<tr>
<td>Standard of Practice 4.8</td>
<td>23</td>
</tr>
<tr>
<td>Standard of Practice 4.9</td>
<td>24</td>
</tr>
<tr>
<td>5.0 Decommissioning</td>
<td>26</td>
</tr>
<tr>
<td>Standard of Practice 5.1</td>
<td>26</td>
</tr>
<tr>
<td>Standard of Practice 5.2</td>
<td>27</td>
</tr>
<tr>
<td>6.0 Worker Safety</td>
<td>28</td>
</tr>
<tr>
<td>Standard of Practice 6.1</td>
<td>28</td>
</tr>
<tr>
<td>Standard of Practice 6.2</td>
<td>29</td>
</tr>
<tr>
<td>Standard of Practice 6.3</td>
<td>30</td>
</tr>
<tr>
<td>7.0 Emergency Response</td>
<td>32</td>
</tr>
<tr>
<td>Standard of Practice 7.1</td>
<td>32</td>
</tr>
<tr>
<td>Standard of Practice 7.2</td>
<td>33</td>
</tr>
<tr>
<td>Standard of Practice 7.3</td>
<td>34</td>
</tr>
<tr>
<td>Standard of Practice 7.4</td>
<td>34</td>
</tr>
<tr>
<td>Standard of Practice 7.5</td>
<td>35</td>
</tr>
<tr>
<td>Standard of Practice 7.6</td>
<td>35</td>
</tr>
</tbody>
</table>
8.0 Training .. 37
 Standard of Practice 8.1 ... 37
 Standard of Practice 8.2 ... 38
 Standard of Practice 8.3 ... 39
9.0 Dialogue ... 41
 Standard of Practice 9.1 ... 41
 Standard of Practice 9.2 ... 42
 Standard of Practice 9.3 ... 42
10.0 References .. 45

LIST OF TABLES
Table 1 Summary of ICMC Principles and Standards of Practice for Gold Mining Operations

LIST OF FIGURES
Figure 1 Location Map

UNITS OF MEASURE AND ABBREVIATIONS
% Percent
ADR Adsorption, Desorption and Regeneration
APELL Awareness and Preparedness for Emergencies at Local Level
Barrick Barrick Gold Corporation
BLM U.S. Department of Interior, Bureau of Land Management
CERCLA Comprehensive Environmental Response, Compensation, and Liability Act
CFR Code of Federal Regulations
CIC Carbon-in-column
CIL Carbon-in-leach
Code International Cyanide Management Code
CRP Comprehensive Reclamation Plan
Cyanco Cyanco Company, LLC
UNITS OF MEASURE AND ABBREVIATIONS (CONTINUED)

DCS Distributed Control System
EDMS Environmental Data Management System
EMPME Environmental Management and Procedures Manual
EMS Emergency Medical Service(s)
EMT Emergency Medical Technician
EPA U.S. Environmental Protection Agency
EPCRA Emergency Planning and Community Right-to-Know Act
ERM Emergency Response Manual
Ft Feet or Foot
HCN Hydrogen cyanide
HDPE High-density polyethylene
HLF Heap Leach Facility
ICMC International Cyanide Management Code
ICMI International Cyanide Management Institute
KCMS Kinross Crisis and Emergency Management System
Kinross Kinross Gold Corporation
Knight Piésold Knight Piésold Consulting
mg/L Milligrams per liter
MOU Memorandum of Understanding
MSDS Material Safety Data Sheet(s)
MSHA Mine Safety and Health Administration
NDEP Nevada Department of Conservation and Natural Resources, Division of Environmental Protection, Bureau of Mining Regulation and Reclamation
PPE Personal protective equipment
ppm Parts per million
UNITS OF MEASURE AND ABBREVIATIONS (CONTINUED)

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC</td>
<td>Polyvinyl chloride</td>
</tr>
<tr>
<td>QA/QC</td>
<td>Quality Assurance and Quality Control</td>
</tr>
<tr>
<td>RMGC</td>
<td>Round Mountain Gold Corporation</td>
</tr>
<tr>
<td>SAG</td>
<td>Semi-autogenous grinding</td>
</tr>
<tr>
<td>SCBA</td>
<td>Self contained breathing apparatus</td>
</tr>
<tr>
<td>SRCE</td>
<td>Standardized Reclamation Cost Estimator</td>
</tr>
<tr>
<td>SVCO</td>
<td>Smoky Valley Common Operation</td>
</tr>
<tr>
<td>TransWood</td>
<td>TransWood, Inc.</td>
</tr>
<tr>
<td>TSF</td>
<td>Tailings Storage Facility</td>
</tr>
<tr>
<td>USFS</td>
<td>U.S. Department of Agriculture, Forest Service</td>
</tr>
<tr>
<td>WAD</td>
<td>Weak-Acid Dissociable</td>
</tr>
<tr>
<td>WPCP</td>
<td>Water Pollution Control Permit</td>
</tr>
</tbody>
</table>
0.0 GENERAL

0.1 Operation Contact Information

Name of Mine: Round Mountain Gold Corporation – Smoky Valley Common Operation

Name of Mine Owner: A 50/50 Joint Venture between Kinross Gold Corporation and Barrick Gold Corporation

Name of Mine Operator: Round Mountain Gold Corporation

Name of Responsible Manager: Mr. Randy Burggraff, Vice President / General Manager

Address and Contact Information:

- Round Mountain Gold Corporation
- #1 Smoky Valley Mine Road / PO Box 480
- Round Mountain, Nevada 89045
- Telephone: +1 775.377.3298
- Facsimile: +1 775.377.3338
- Email: randy.burggraff@kinross.com

0.2 Location and Description of Operation

Round Mountain Gold Corporation (“RMGC”) currently operates the Smoky Valley Common Operation (“SVCO”), a large, conventional open pit heap leach and milling operation located in Nye County, Nevada, USA. As shown in Figure 1, the mine is located between the Toiyabe and Toquima mountain ranges, in the Big Smoky Valley, near the town of Round Mountain and approximately 45 miles air miles northeast of Tonopah and 54 air miles south of Austin. The subdivision of Hadley, which houses many of the RMGC employees and contractors, is located approximately two miles to the southwest. The mine operates under a Mining Plan of Operations on lands managed by the U.S. Department of Interior, Bureau of Land Management (“BLM”) and the U.S. Department of Agriculture, Forest Service (“USFS”), as well as on private land owned by RMGC. Several small cattle ranches are located to both the north and south of the SVCO.

Figure 1 - Location Map
Mining has occurred in the Round Mountain District since 1906, and ownership of the property has changed many times. The current ownership is a 50/50 joint venture between wholly-owned subsidiaries of Kinross Gold Corporation (“Kinross”) and Barrick Gold Corporation (“Barrick”). Kinross executes the operational responsibilities granted to it by the joint venture partnership agreement via the RMGC subsidiary. Currently, the mine employs approximately 880 people and mining and ore processing operations are scheduled through 2024.

The mine is located in an arid climate, and has an average annual precipitation of approximately 6½ inches. There are no perennial surface water bodies; water flows are restricted to large storm events or rapid snowmelt conditions. Groundwater beneath the mine site ranges from 180 to 425 feet below ground surface.

The Round Mountain deposit contains diverse ore grades and mineralogical ore types, which dictate the applicability of various extraction processes employed. Currently, the mine operates two open pits in two distinct areas; the Round Mountain Pit and the Gold Hill Pit. The Round Mountain Pit and associated processing facilities (referred to as Round Mountain) was in operation during the April 2010 International Cyanide Management Code (“ICMC” or “Code”) recertification audit. The Gold Hill Pit and associated processing facilities (referred to as Gold Hill) began operations, including leaching, in November 2012.

Higher grade sulfide ore mined from the Round Mountain Pit is processed by a mill using gravity, froth flotation, and cyanide leach circuit unit processes. A gross gold concentrate is produced by the gravity circuit with the gravity tails being processed by froth flotation. The flotation concentrate is then combined with the coarse gold processing circuit tails and then treated in a carbon-in-leach (“CIL”) cyanide circuit. Approximately 96-97 percent (“%”) of total mill feed exits as gravity/flotation circuit tailings with the remaining 3-4% exiting as leach circuit tailings. Both tailings streams are combined before exiting the mill.

The mill leaching process includes an INCO© detoxification step that reduces Weak-Acid Dissociable (“WAD”) cyanide concentration to less than 10 parts per million (“ppm”) in the mill tailings, which are further diluted by combination with the gravity (non-cyanide) process tailings stream. The combined tailings stream is directed to a large, synthetic-lined tailings storage facility (“TSF”) with an embankment design that incorporates a seepage collection and return system. WAD cyanide values as measured in the tailings slurry are typically less than 10 milligrams per liter (“mg/L”).

Higher-grade oxide ores mined from the Round Mountain Pit are crushed and placed on a reusable heap leach pad. Run-of-Mine, lower grade oxide ores are placed on two large (West and South) dedicated heap leach pads. Ore on the leach pads is leached with sodium cyanide solution and gold and silver recovery is via a carbon plant and an adsorption, desorption and regeneration (“ADR”) plant.

The Gold Hill deposit contains low-grade oxide ore, which was initially crushed and placed on a dedicated heap leach pad. At the time of this ICMC recertification audit, RMGC was not crushing and was placing Run-of-Mine ore on the Gold Hill Heap Leach Pad. The ore is leached with sodium cyanide solution and gold and silver recovery is via a dedicated ADR plant, which includes a carbon-in-column (“CIC”) circuit.
Gold and silver extracted at both Round Mountain and Gold Hill through the above-described methods is ultimately refined as doré bullion. Each area operates its own refinery.

In the three years since the April 2010 ICMC recertification audit, major changes in cyanide facilities and operations include:

- Construction and commissioning of Gold Hill, which includes a new open pit, heap leach facility, processing plant and refinery;
- Increasing tailings disposal capacity at Round Mountain by adding an additional 20-foot (“ft”) high lift (i.e., the Stage 5 or 6,070-ft elevation lift); and
- Upgrading the tailings delivery pipeline and containment channel between the Mill and the TSF.

0.3 Cyanide Facilities

The active cyanide facilities at the SVCO are a component of the existing “fluid management systems” at Round Mountain and Gold Hill. The fluid management systems are regulated by the Water Pollution Control Permits (“WPCPs”) administered by the Nevada Department of Conservation and Natural Resources, Division of Environmental Protection, Bureau of Mining Regulation and Reclamation (“NDEP”) and primarily consist of the process components and facilities. Round Mountain and Gold Hill each operate under separate WPCPs.

0.3.1 Round Mountain

The active cyanide facilities at Round Mountain consist of the following:

- South Dedicated Heap Leach Facility (“HLF”) – comprised of leach pad, pond system, carbon adsorption plant, and associated pipeline, tank and secondary containment systems;
- West Dedicated HLF – comprised of leach pad, pond system, and associated pipeline, tank and secondary containment systems;
- Round Mountain ADR Plant (a.k.a., South ADR Plant) – comprised of ADR circuit, pond system, and associated pipeline, process tank and secondary containment systems;
- Reusable HLF – comprised of two leach pads and associated pipeline and solution conveyance systems;
- Mill – comprised of leach, CIL and cyanide destruction circuits;
- TSF – comprised of tailings impoundment (Cell 1);
- Tailings and reclaim water pipeline systems;
- Five (5) liquid cyanide offload/storage facilities, including seven cyanide storage tanks total; and
- All associated channels, transfer pipes, valves, pumps and tanks used in conveyance, control or detection of process solution between process components.

The South Dedicated HLF is comprised of a synthetic-lined leach pad and solution/stormwater event pond system, a carbon adsorption plant (Dedicated Plant), and a liquid cyanide offload/storage facility. The leach pad has been constructed in five phases (Phases 1 through 5). In total, the South Dedicated HLF pond system includes two
solution ponds (i.e., Dedicated Pregnant Pond and Dedicated Lean Pond) and five event ponds. The cyanide offload/storage facility for the South Dedicated HLF is located at the Dedicated Plant.

The West Dedicated HLF is comprised of a synthetic-lined leach pad, solution/stormwater event pond system and two liquid cyanide offload/storage facilities. The leach pad has been constructed in six phases (Phases 1 through 5 and 6A). During the 2010 ICMC recertification audit, the Phase 6A pad area was being loaded with ore; however, the area was not yet under leach. In total, the West Dedicated HLF pond system includes three solution ponds (i.e., the Phase 6 Feed Pond, West Dedicated Return Pond and the Phase 4/5 Feed Pond) and four event ponds. The Phase 6 Feed Pond and one event pond are located together on the south side of the West Dedicated Heap Leach Pad and the Phase 4/5 Feed Pond, West Dedicated Return Pond and three event ponds are located on the west side of the pad. The two cyanide offload and storage facilities are located at the Phase 6 Feed Pond and at the Phase 4/5 Feed Pond.

The Reusable HLF is comprised of two, asphalt-lined, reusable leach pads (East and West). The pads are located side-by-side at one location, between the Mill and the South ADR Plant.

The South ADR Plant is situated between the West Dedicated HLF and the Reusable HLF. The facility is comprised of the process plant, a synthetic-lined solution and stormwater event pond system, and a liquid cyanide offload/storage facility. The South ADR Plant has one solution pond (i.e., South ADR Barren Pond), three event ponds, and an evaporation pond (for neutralized acid water from the strip circuit). The cyanide offload/storage facility is located on the west side of the ADR Plant building.

The milling operation includes a semi-autogenous grinding ("SAG") mill and gravity and flotation circuits followed by a cyanide leach circuit and cyanide destruct circuit. The leach circuit is comprised of three leach tanks and six CIL tanks. The cyanide destruction circuit utilizes the INCO© process. Treated CIL tailings are combined with the gravity circuit tailings and pumped to the TSF. Screened carbon from the CIL circuit is sent to the South ADR Plant for recovery of the precious metals and regeneration of carbon. The cyanide offload/storage facility is located on the west side of the Mill building.

Aside from groundwater sources, water from the TSF Reclaim Ponds is the only makeup source used in the Mill. Water quality data provided for these ponds demonstrate that WAD cyanide concentrations are consistently below 0.5 mg/L (see Section 4.4.2 below). Therefore, for purposes of the ICMC, the cyanide facilities at the Mill only include the cyanide leach, CIL and destruction circuits, and a liquid cyanide offload/storage facility.

The TSF is constructed with a full underdrain system to facilitate collection and drainage of solution from beneath the impoundment. A series of pipes drain to a synthetic-lined solution collection channel along the west side of the facility, which drains to a synthetic lined pond system comprised of a sediment pond, two reclaim ponds (i.e., Reclaim Pond #1, and Reclaim Pond #2), and one event pond. As mentioned above, water quality data provided for these ponds demonstrate that WAD cyanide concentrations are consistently below 0.5 mg/L; therefore, this pond system is not considered a cyanide facility under the ICMC.
The pipeline system conveying tailings from the Mill to the TSF is constructed of high-density polyethylene ("HDPE") material and is contained within a clay-lined, earthen channel. The channel provides secondary containment for the pipeline system.

0.3.2 Gold Hill

The active cyanide facilities at Gold Hill consist of the following:

- Gold Hill HLF – comprised of leach pad, pond system, and associated pipeline, tank and secondary containment systems;
- Gold Hill ADR Plant, including six carbon columns, an Acid Wash Tank, Activated Carbon Storage Tank, Strip Vessel, Barren Strip Solution Tank, Barren Eluate Return Tank, Pregnant Strip Solution Tank, Barren Solution Vault, Electrowinning Sludge Filter Press Feed Tank, and various carbon handling tanks;
- Liquid cyanide offload/storage facility, including two cyanide storage tanks; and
- All associated channels, transfer pipes, valves, pumps and tanks used in conveyance, control or detection of process solution between process components.

The Gold Hill HLF is comprised of a synthetic-lined leach pad and solution/stormwater event pond system. To date, RMGC has constructed Phase 1 of the leach pad. In total, the Gold Hill HLF pond system includes one solution pond (i.e., Gold Hill Pregnant Pond) and one event pond. The Gold Hill ADR Plant includes a CIC circuit (six columns), acid wash and strip circuit, Electrowinning Pregnant Solution Tank, Barren Strip Solution Tank, and a Barren Solution Vault. The liquid cyanide offload/storage facility for the Gold Hill process facilities is located just west of the Gold Hill ADR Plant building, on the east side of the pregnant solution pond.
0.4 Auditor Information

Audit Company: Visus Consulting Group, Inc.
Audit Team Leader: Mark A. Montoya, PE, CEA
Address and Contact Information:
7278 South Sundown Circle
Littleton, Colorado 80120
Telephone: 720.302.0892
Facsimile: 303.797.3643
Email: mmontoya@visuscorp.com

Names and Signatures of other Auditors:
Lydia R. Renton, CIH, ROH

Audit Dates: August 12 – 16, 2013

I attest that I meet the criteria for knowledge, experience and conflict of interest for Code Verification Audit Team Leader, established by the International Cyanide Management Institute (“ICMI”) and that all members of the audit team meet the applicable criteria established by the ICMI for ICMC Verification Auditors. I further attest that this Detailed Audit Findings Report accurately describes the findings of the verification audit conducted for the SVCO located in Nye County, Nevada, and that the verification audit was conducted in a professional manner in accordance with the ICMC Verification Protocol for Gold Mine Operations (dated October 2009) and using standard and accepted practices for health, safety and environmental audits.

FOR VISUS CONSULTING GROUP, INC.

Mark A. Montoya, PE, CEA
President / Principal
Lead Auditor and Gold Mining Technical Expert Auditor
0.5 Audit Findings

The operation is in ☑ Full Compliance ☐ Substantial Compliance ☐ Non-Compliance with the International Cyanide Management Code.

During the previous three-year audit cycle, RMGC experienced a cyanide release (i.e., release of cyanide-bearing solution to soil), which is subject to listing under Question 3 of the ICMC Standard of Practice 9.3. The release, occurring on December 28, 2011, was a “significant cyanide incident” subject to the notification requirements in Item 6 of the ICMC Signatory Application; nonetheless, the incident does not affect RMGC’s compliance status. The incident is described under Standard of Practice 9.3 of this Summary Audit Report, and RMGC reported the incident to ICMI on December 29, 2011. No incidents during the previous three-year audit cycle involved worker exposures to cyanide. The operation has only used ICMC-certified cyanide suppliers and transporters since the previous ICMC audit conducted in April 2010.
0.6 Summary of ICMC Principles and Standards of Practice

For easy reference, Table 1 below provides a summary of the ICMC Principles and associated Standards of Practice.

<table>
<thead>
<tr>
<th>PRINCIPLE</th>
<th>STANDARDS OF PRACTICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PRODUCTION: Encourage responsible cyanide manufacturing by purchasing from manufacturers who operate in a safe and environmentally protective manner.</td>
<td>1.1 Purchase cyanide from manufacturers employing appropriate practices and procedures to limit exposure of their workforce to cyanide and to prevent releases of cyanide to the environment.</td>
</tr>
</tbody>
</table>
| 2. TRANSPORTATION: Protect communities and the environment during cyanide transport. | 2.1 Establish clear lines of responsibility for safety, security, release prevention, training and emergency response in written agreements with producers, distributors and transporters.
2.2 Require that cyanide transporters implement appropriate emergency response plans and capabilities, and employ adequate measures for cyanide management. |
| 3. HANDLING AND STORAGE: Protect workers and the environment during cyanide handling and storage. | 3.1 Design and construct unloading, storage and mixing facilities consistent with sound, accepted engineering practices and quality control and quality assurance procedures, spill prevention and spill containment measures.
3.2 Operate unloading, storage and mixing facilities using inspections, preventive maintenance and contingency plans to prevent or contain releases and control and respond to worker exposures. |
| 4. OPERATIONS: Manage cyanide process solutions and waste streams to protect human health and the environment. | 4.1 Implement management and operating systems designed to protect human health and the environment including contingency planning and inspection and preventive maintenance procedures.
4.2 Introduce management and operating systems to minimize cyanide use, thereby limiting concentrations of cyanide in mill tailings.
4.3 Implement a comprehensive water management program to protect against unintentional releases.
4.4 Implement measures to protect birds, other wildlife and livestock from adverse effects of cyanide process solutions.
4.5 Implement measures to protect fish and wildlife from direct and indirect discharges of cyanide process solutions to surface water.
4.6 Implement measures designed to manage seepage from cyanide facilities to protect the beneficial uses of ground water.
4.7 Provide spill prevention or containment measures for process tanks and pipelines.
4.8 Implement quality control/quality assurance procedures to confirm that cyanide facilities are constructed according to accepted engineering standards and specifications.
4.9 Implement monitoring programs to evaluate the effects of cyanide use on wildlife, surface and ground water quality. |
Table 1 (continued)
Summary of ICMC Principles and Standards of Practice for Gold Mining Operations

<table>
<thead>
<tr>
<th>PRINCIPLE</th>
<th>STANDARDS OF PRACTICE</th>
</tr>
</thead>
</table>
| 5. DECOMMISSIONING: Protect communities and the environment from cyanide through development and implementation of decommissioning plans for cyanide facilities. | 5.1 Plan and implement procedures for effective decommissioning of cyanide facilities to protect human health, wildlife and livestock.
5.2 Establish an assurance mechanism capable of fully funding cyanide-related decommissioning activities. |
| 6. WORKER SAFETY: Protect workers’ health and safety from exposure to cyanide. | 6.1 Identify potential cyanide exposure scenarios and take measures as necessary to eliminate, reduce and control them.
6.2 Operate and monitor cyanide facilities to protect worker health and safety and periodically evaluate the effectiveness of health and safety measures.
6.3 Develop and implement emergency response plans and procedures to respond to worker exposure to cyanide. |
| 7. EMERGENCY RESPONSE: Protect communities and the environment through the development of emergency response strategies and capabilities. | 7.1 Prepare detailed emergency response plans for potential cyanide releases.
7.2 Involve site personnel and stakeholders in the planning process.
7.3 Designate appropriate personnel and commit necessary equipment and resources for emergency response.
7.4 Develop procedures for internal and external emergency notification and reporting.
7.5 Incorporate into response plans monitoring elements and remediation measures that account for the additional hazards of using cyanide treatment chemicals.
7.6 Periodically evaluate response procedures and capabilities and revise them as needed. |
| 8. TRAINING: Train workers and emergency response personnel to manage cyanide in a safe and environmentally protective manner. | 8.1 Train workers to understand the hazards associated with cyanide use.
8.2 Train appropriate personnel to operate the facility according to systems and procedures that protect human health, the community and the environment.
8.3 Train appropriate workers and personnel to respond to worker exposures and environmental releases of cyanide. |
| 9. DIALOGUE: Engage in public consultation and disclosure. | 9.1 Provide stakeholders the opportunity to communicate issues of concern.
9.2 Initiate dialogue describing cyanide management procedures and responsively address identified concerns.
9.3 Make appropriate operational and environmental information regarding cyanide available to stakeholders. |
1.0 PRODUCTION

Encourage responsible cyanide manufacturing by purchasing from manufacturers who operate in a safe and environmentally protective manner.

Standard of Practice 1.1

Purchase cyanide from manufacturers employing appropriate practices and procedures to limit exposure of their workforce to cyanide and to prevent releases of cyanide to the environment.

- Full Compliance
- Substantial Compliance
- Non-Compliance

The operation is in **Full Compliance** with Standard of Practice 1.1.

Discussion of the basis for this Finding and any Identified Deficiencies:

RMGC continues to purchase sodium cyanide solution exclusively from Cyanco Company, LLC (“Cyanco”), Winnemucca, NV, under a new corporate contract (Sodium Cyanide Contract) and there have been no supply disruptions over the period following the April 2010 ICMC recertification audit. The Sodium Cyanide Contract between Kinross Gold Corporation (Toronto, Canada) and Cyanco Corporation (Reno, NV) provides for specific purchase conditions for the SVCO. The previous contract, which expired on in 2011, was directly between RMGC and Cyanco. Both the new and the previous contracts explicitly require both parties to achieve and maintain compliance with ICMC requirements. Cyanco was originally certified to the ICMC in 2006, and was recertified on November 6, 2009 and July 12, 2013.
2.0 TRANSPORTATION

Protect communities and the environment during cyanide transport.

Standard of Practice 2.1

Establish clear lines of responsibility for safety, security, release prevention, training and emergency response in written agreements with producers, distributors and transporters.

- Full Compliance
- Substantial Compliance
- Non-Compliance

The operation is in **Full Compliance** with Standard of Practice 2.1.

Discussion of the basis for this Finding and any Identified Deficiencies:

The cyanide producer (Cyanco) and transporter, TransWood, Inc. (“TransWood”), have not changed since the December 2006 and April 2010 ICMC audits. Sodium cyanide solution is produced at the Cyanco production plant in Winnemucca, Nevada and product is delivered to RMGC in bulk delivery tankers. Cyanco contracts the truck delivery of the cyanide solution to the TransWood Winnemucca Terminal, located several miles from the production facility. Both Cyanco and TransWood have been recently (July 2013) recertified to the ICMC as evidenced by the Summary Audit Reports for both operations currently posted on the ICMI website.

The current Kinross contract with Cyanco specifies compliance with the ICMC, and addresses compliance with Production and Transportation Requirements. Under the contract, Cyanco is responsible for compliance with the requirements of the ICMC applicable to all aspects of production and transportation to the delivery locations, including providing appropriate packaging and labeling, storage, evaluation and identification of transportation routes, interim loading and unloading, transportation to the delivery locations, training of transporters and handlers, transport maintenance for any transport vehicles provided by Cyanco or its affiliates, security and emergency response procedures throughout the shipping process. Additionally, the Sodium Cyanide Contract specifies that Cyanco is responsible for pumping the cyanide into the storage tanks at the designated storage facilities.

The contract specifically extends all requirements and prohibits changes in subcontractors without RMGC approval. Production and Transportation Requirements include provisions that Cyanco must provide documentation satisfactory to Kinross that each handling or transport subcontractor is compliant with the ICMC. If third party carriers are subcontracted to deliver the cyanide, Cyanco must select carriers that will perform to the same standards as are required of Cyanco, and Cyanco must monitor any such third party carriers to ensure that they comply with all laws applicable to the handling, loading, transporting and delivery of cyanide.
Standard of Practice 2.2

Require that cyanide transporters implement appropriate emergency response plans and capabilities, and employ adequate measures for cyanide management.

The operation is in Full Compliance with Standard of Practice 2.2.

Discussion of the basis for this Finding and any Identified Deficiencies:

Please refer to Section 2.1 above. RMGC continues to purchase cyanide exclusively from Cyanco. Cyanco contracts the truck delivery of the cyanide solution to the TransWood Winnemucca Terminal, located several miles from the production facility. The chain of custody documentation includes a record of the transportation from the Cyanco plant in Winnemucca by TransWood to delivery to the various RMGC secure cyanide offload/storage facilities. RMGC and Cyanco maintain all documentation for transportation of the cyanide between the production facility and the mine site.

Both Cyanco and TransWood have been recently (July 2013) recertified to the ICMC as evidenced by the Summary Audit Reports for both operations currently posted on the ICMI website. The TransWood Winnemucca Terminal was originally certified to the ICMC in 2006, and was recertified in November 2009 and July 2013.
3.0 HANDLING AND STORAGE

Protect workers and the environment during cyanide handling and storage.

Standard of Practice 3.1

Design and construct unloading, storage and mixing facilities consistent with sound, accepted engineering practices, quality control/quality assurance procedures, spill prevention and spill containment measures.

- The operation is in Full Compliance with Standard of Practice 3.1.
- Substantial Compliance
- Non-Compliance

Discussion of the basis for this Finding and any Identified Deficiencies:

RMGC receives sodium cyanide as 30% aqueous solution in dedicated tanker trailers and stores its cyanide in insulated steel tanks separately from incompatible materials. RMGC does not allow empty tankers to remain on the mine property; thus, trucks leave mine property immediately after offloading. All cyanide storage areas are located outside and are well ventilated with minimal potential for hydrogen cyanide (“HCN”) gas build-up. There are no perennial surface water features at or adjacent to the mine, and the security perimeters of all cyanide facilities are well distant from any dwellings. The cyanide offload/storage facilities are located with the secured (fenced and gated) area of the mine and RMGC has installed locks on all valves at the cyanide storage tanks, which if opened inadvertently, could expose workers to high-strength cyanide or release high-strength cyanide to the environment.

As discussed in Section 0.3 above, RMGC operates six liquid cyanide offload/storage facilities at the SVCO as follows:

- One (1) at the South Dedicated HLF (located at the Dedicated Plant);
- Two (2) at the West Dedicated HLF (located at the Phase 5 Feed Pond and at the Phase 4/5 Feed Pond);
- One (1) at the South ADR Plant;
- One (1) at the Mill; and
- One (1) at the Gold Hill ADR Plant.

As determined in the initial 2006 ICMC verification audit, a professional engineer with Knight Piésold Consulting (“Knight Piésold”) performed an independent evaluation of the cyanide offload/storage facilities at Round Mountain and found these facilities to be adequately designed and constructed. A professional civil engineer, registered in the State of Nevada, certified the as-built construction of the cyanide offload/storage facilities at Gold Hill in accordance with the State of Nevada requirements.
Cyanide is offloaded on concrete pads that drain to secondary containments (i.e., concrete containments or lined process ponds) at both Round Mountain and Gold Hill. All cyanide storage tanks at the SVCO are located on concrete or synthetic-lined containment. The cyanide storage tanks located at the South ADR Plant, Mill and Dedicated Plant are situated with concrete secondary containment and rest on solid mass concrete foundations. The horizontal tanks located at the Phase 5 Feed Pond and at the Phase 4/5 Feed Pond are within a lined containment area supported by steel skid frames set on the liner system. The horizontal storage tanks located at the Gold Hill ADR Plant are within a curbed concrete containment that drains to an internal concrete sump connected to the pregnant solution pond via a buried pipe-in-pipe drain. Containment provided for all cyanide offload/storage facilities drains to dedicated concrete sumps or to process solution ponds or event ponds.

RMGC operators in the Mill and both ADR control rooms remotely monitor automated level indicators for each storage tank via the Distributed Control System (“DCS”). Control systems include both audible and visual high-level alarms set to alert if a tank level reaches 90% full. Cyancor also monitors cyanide storage tank levels remotely, calculates fill volumes for each offload site to prevent overfill, and manages the filling schedule as part of its current contract.

Standard of Practice 3.2

Operate unloading, storage and mixing facilities using inspections, preventive maintenance and contingency plans to prevent or contain releases and control and respond to worker exposures.

| The operation is in | Full Compliance | with Standard of Practice 3.2. | Substantial Compliance | Non-Compliance |

Discussion of the basis for this Finding and any Identified Deficiencies:

The TransWood transport driver is responsible for following Cyancor procedures, which describe the process for checking tank levels before beginning the unloading operation, uncapping the quick-release coupling on the storage tank, attaching the discharge hose from the cyanide tanker, attaching a compressed air source (i.e., plant air and/or an onboard blower), and pressurizing the system to transfer the solution from the trailer to the stationary solution tank. The TransWood driver carries appropriate personal protective equipment (“PPE”), use of which is addressed as part of the Cyancor procedure.

RMGC implements Standard Job Procedures (a.k.a. “Task Training Cards” or “Task Cards”), which provide procedures for the RMGC spotter including use of proper PPE, escorting the delivery truck to the offload facility, inspecting the area for hazards, becoming familiar with the emergency shutdown system on the delivery truck, ensuring secure connections, safely observing the offload hookup and proper shutdown and cleanup. More specifically, these Task Cards provide procedures for operating the valves and couplings (including routine and emergency valve operation), depressurizing, shutting down the delivery system and notifying RMGC, Cyancor and
TransWood Dispatch for instructions if there is a leak, overflow, spill, exposure or other emergency involving the offload to ensure proper dispatch of the Emergency Response Team.
4.0 OPERATIONS

Manage cyanide process solutions and waste streams to protect human health and the environment.

Standard of Practice 4.1

Implement management and operating systems designed to protect human health and the environment including contingency planning and inspection and preventive maintenance procedures.

<table>
<thead>
<tr>
<th>The operation is in</th>
<th>☑ Full Compliance</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>with Standard of Practice 4.1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Discussion of the basis for this Finding and any Identified Deficiencies:

Section 0.3 above lists the active cyanide facilities at the SVCO. RMGC has developed, implemented and maintained written management and operating plans and procedures for its cyanide facilities, and evidence indicates that the procedures have been in effect over the past three years between ICMC audits. In addition to the management and operating plans, written procedures include a wide range of RMGC departmental Task Cards. At the facility level, Task Cards and other operational instructions govern all cyanide management activities. Task Cards also serve to document individual training actions related to the work tasks. These written procedural documents cover the RMGC cyanide facilities and provide measures for managing cyanide in a manner that prevents or controls releases to the environment and exposures to workers and the community. The written procedures identify required PPE and the risks involved with the operating tasks, and adequately describe safe work practices.

The design reports for the heap leach facilities, process plants, Mill and TSF incorporate the appropriate regulatory requirements. State regulatory permits identify the primary assumptions and parameters on which these process facility designs are based as well as the regulatory requirements for operating these facilities. The RMGC Fluid Management Plans provide the management procedures for the fluid management systems defined by the WPCPs, which include but are not limited to, the active cyanide facilities described in Section 0.3 above.

Additionally, RMGC has implemented inspection programs for all cyanide facilities. The Environmental Department conducts routine inspections of facilities, site wide. Wildlife mortality inspections are conducted daily, at minimum. Mill personnel conduct detailed, routine inspections of the Mill facilities. Process personnel conduct detailed, routine inspections of the heap leach process areas including the pads, pond systems, and process plants. RMGC also performs general area inspections and Managers perform quarterly inspections of areas (mine wide) to identify hazards and issues requiring repair. Finally, as stipulated by its Dam Safety Permit, RMGC conducts periodic inspections of the TSF (tailings impoundment and appurtenant works) and the NDEP performs quarterly WPCP compliance inspections of the facilities. NDEP inspections identify any issues associated with the process
facilities, equipment (including monitoring and control equipment), practices, or operations regulated by the permits.

RMGC conducts inspections on an established frequency sufficient to assure that the cyanide facilities are functioning within design parameters and documents the inspections on checklists and inspection forms and in reports. During this recertification field audit, the auditor reviewed inspection records over the three-year period between the 2010 ICMC recertification audit and this 2013 audit. Although RMGC is conducting comprehensive inspections of its cyanide facilities, the inspection records provided over the period between audits for the “Tails and Reclalm” and the “Leach/CIL/CN Destruct/Tails Thickener” inspections were incomplete with records missing for certain inspections, and based on the records, it was unclear whether inspections of all cyanide facilities were being documented. At the request of the auditor, following the field component of this audit, RMGC provided representative samples of the missing inspection forms, demonstrating that the inspections had been documented and that all cyanide facilities were covered. Additionally, RMGC explained that the “Tails and Reclalm” and the “Leach/CIL/CN Destruct/Tails Thickener” inspection forms have been replaced by the “Supervisor’s Daily Area Inspections” form. Furthermore, inspections documented on the “General Inspection Reports” and the “Oversight Inspection” and “Examination of Working Places” forms provide overlap of these cyanide facilities. Therefore, based on the information provided, in the auditor’s professional judgment, RMGC has satisfactorily met the requirements of this ICMC Standard of Practice. Nonetheless, the auditor recommends that RMGC take measures to improve its archiving system for all the various inspection reports, which are used to document routine inspections of cyanide facilities.

In addition to the inspection program outlined above, RMGC has implemented a preventative maintenance program for critical equipment. The preventative maintenance schedule provides a listing of the equipment along with the planned time for maintenance. RMGC manages the system using software, which automatically produces preventative maintenance work orders on an established schedule. The software system identifies future activities for regular preventative maintenance and includes information on the task requirements and completion. Maintenance inspections are documented by the preventative maintenance work orders, which reside electronically on the software system. During this audit, the auditor reviewed maintenance records for the cyanide facilities over the three-year period between the 2010 ICMC audit and this recertification audit.

RMGC utilizes several risk assessment models designed to evaluate subjective worker and environmental risk, to identify when changes in processes or operating practices may increase the potential for the release of cyanide, and to incorporate the necessary release prevention measures. RMGC provided associated documentation for the cyanide-related changes that occurred at the SVCO over the three-year period between the 2010 ICMC recertification audit and this audit.

RMGC implements cyanide management contingency procedures. The Fluid Management Plans contain procedures to correct an upset in the operation’s water balance and address both “normal operations” and “unusual operations” for each of the process facilities. RMGC inspects and documents the pond levels each shift to identify potential upset conditions. Operational inspection checklists and forms include noted deficiencies or problems identified by inspections. The WPCP Applications contain a Seasonal Closure Plan (for unplanned closure
due to extremely severe weather conditions), Temporary Closure Plan, and a Tentative Plan for Permanent Closure. The seasonal and temporary closure plans include measures for the ongoing monitoring and maintenance of facilities and to ensure that adequate storage capacity is available in the solution ponds. RMGC’s Integrated Contingency Plan provides response and mitigation measures for spills, leaks, or releases of petroleum or hazardous materials into the environment and is designed to minimize hazards to personnel and the environment.

Overhead line power provides primary power to the mine. Additionally, RMGC maintains diesel-powered generators to run critical equipment including process solution pumps at the various process areas, in case of a primary power failure. These generators automatically start when primary power is interrupted. RMGC Maintenance groups perform routine preventative maintenance on the generators, and the auditor reviewed maintenance records over the period 2010 through 2013.

Standard of Practice 4.2

Introduce management and operating systems to minimize cyanide use, thereby limiting concentrations of cyanide in mill tailings.

<table>
<thead>
<tr>
<th>The operation is</th>
<th>Standard of Practice 4.2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ not subject to</td>
<td>☑ in Full Compliance with</td>
</tr>
<tr>
<td>☑ in Substantial Compliance with</td>
<td>☑ in Non-Compliance with</td>
</tr>
</tbody>
</table>

Discussion of the basis for this Finding and any Identified Deficiencies:

Ore characteristics at the RMGC operation are such that significant variations in cyanide use do not occur. Ore mined from the new Gold Hill Pit is not milled. RMGC has tested various cyanide addition rates and continually monitors its leach process to optimize recovery and minimize cyanide consumption. Cyanide addition rates are monitored using a manual titration process, conducted every two hours by designated personal. The manual sampling and analysis program forms the basis for cyanide addition and/or adjustment and includes pH control. The stated goal is to optimize cyanide use according to established “set points” and minimum/maximum values.

Standard of Practice 4.3

Implement a comprehensive water management program to protect against unintentional releases.

<table>
<thead>
<tr>
<th>The operation is</th>
<th>with Standard of Practice 4.3.</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Full Compliance</td>
<td>☑ Substantial Compliance</td>
</tr>
<tr>
<td>☑ Non-Compliance</td>
<td></td>
</tr>
</tbody>
</table>

Discussion of the basis for this Finding and any Identified Deficiencies:

Round Mountain Gold Corporation
Smoky Valley Common Operation

NAME OF MINE

SIGNATURE OF LEAD AUDITOR

January 8, 2014

DATE

PAGE 18 of 45
RMGC has developed a comprehensive, probabilistic water balance model, using GoldSim® software, which tracks water flow throughout the engineered water management facilities at Round Mountain, including the dewatering and potable well systems, the Mill and TSF, all heap leach facilities, and the process plants (i.e., the South ADR Plant and Dedicated Plant). Generally, the model considers precipitation, evaporation, makeup water, ore leach rates, tailings deposition, ore and tailings uptake, seepage from the TSF to the Reclaim Ponds, reclaim water, power failure (the model can simulate loss of power), and dewatering and potable water uses including discharge to the Rapid Infiltration Basin. These parameters are considered in a reasonable manner and as appropriate for the facilities and environment.

RMGC developed a similar model for purposes of designing and constructing the Gold Hill process facilities. At the time of this 2013 ICMC recertification audit, the Gold Hill operational water balance model was still under development; however, in the auditor’s professional judgment, the water balance model developed for purposes of designing and constructing the Gold Hill process facilities is currently adequate and reasonably (conservatively) considers the appropriate factors. As of this ICMC recertification audit, only the first phase of the Gold Hill Heap Leach Pad has been constructed and the pond system is designed to provide capacity for future phases.

Current operating procedures, as defined in the Fluid Management Plans are considered adequate to prevent overtopping of ponds and the tailings impoundment. Solution ponds are monitored routinely by operations and environmental personnel. The pond systems are designed to contain the 100-year, 24-hour storm event, and 24 hours of draindown from the heaps during an unexpected power outage, while maintaining two feet of freeboard. The seepage collection pond system for the TSF is sized to contain the 100-year, 24-hour storm event, operating inventories, and a 48-hour power loss. RMGC operates its pond systems to maintain dedicated storage capacity at all times to meet these design criteria.

RMGC collects precipitation data from two onsite meteorological stations, including a new station located just east of the Gold Hill Heap Leach Pad. The Environmental Department compiles the data for input to the water balance model on a monthly basis. The data resides in the RMGC Environmental Data Management System ("EDMS").

Standard of Practice 4.4

Implement measures to protect birds, other wildlife and livestock from adverse effects of cyanide process solutions.

- [x] Full Compliance
- [] Substantial Compliance
- [] Non-Compliance

The operation is in Full Compliance with Standard of Practice 4.4.

Discussion of the basis for this Finding and any Identified Deficiencies:

The heap leach pads, collection channels and solution ponds are the only facilities in which open cyanide-bearing solutions occur with WAD cyanide concentrations greater than 50 mg/L. WAD cyanide concentrations in the
tailings impoundment and its seepage collection pond system are well below 50 mg/L. With the exception of the tailings impoundment, its sediment and reclaim ponds, and the various event ponds, all open process solutions at the SVCO are covered or protected by physical barrier systems. RMGC does not store process solutions in the event ponds.

During this 2013 ICMC recertification audit, the auditor reviewed and verified the effectiveness of these programs while on site, as well as wildlife mortality reporting documents and compliance records. It was noted that several process ponds required additional bird balls to provide adequate coverage of open solution and the auditor requested that RMGC replenish bird balls in the ponds where needed. Additionally, standing solution was observed in the concrete containment provided for the Barren Solution Vault at Gold Hill, caused by solution “splashing” out of the vault. Following the field component of this ICMC audit, RMGC purchased four truckloads of bird balls to replenish the ponds where needed and moved some extra bird balls from an empty event pond to two process ponds that were lacking adequate coverage. RMGC provided photographic evidence demonstrating that all process solution ponds now have adequate bird ball coverage with no exposed process solution. Furthermore, RMGC provided evidence (photographic and written) demonstrating repairs made to the Barren Solution Vault and installation of bird netting around the entire perimeter of the vault from the upper decking down to the concrete containment wall.

As mentioned, the TSF is the only facility where open cyanide solutions are not covered by wildlife deterrent systems other than fencing. Thus, the final tailings slurry discharged to the TSF is sampled at the Mill daily. The target concentration at the discharge to the tailings impoundment is 10 or less mg/L WAD cyanide; however, RMGC manages the concentrations at much lower levels by destructing the CIL tailings using the INCO® process and then diluting the treated tailings with the gravity circuit tailings prior to discharge to the TSF.

The TSF and related systems are inspected on a daily basis. Interviews with the environmental personnel during this onsite recertification audit established that field personnel are trained to report wildlife observances according written procedures. Additionally, RMGC environmental personnel conduct a weekly inspection of the TSF, which includes observation of wildlife where open process solutions are stored. Although other cyanide-related wildlife mortalities have occurred at SVCO (see Section 4.9 below), the auditor reviewed the RMGC mortality log and regulatory reports and verified that no cyanide-related wildlife mortalities have occurred at the TSF over the three-year period since the 2010 ICMC recertification audit.

RMGC uses drip emitters to apply leach solution to the tops of the heaps, which serves to minimize ponding. In most cases, RMGC buries the emitters to minimize solution loss and wildlife exposures. In all cases, drip lines on sides of heaps, with low potential for ponding due to the slope, remain on top of the slope surface. Overspray is effectively eliminated with the drip emitters. Nonetheless, RMGC has been experiencing poor percolation at the Gold Hill Heap Leach Pad due to fine-grained, clayey ore, which causes ponding on top of the heap. To address this, RMGC has been irrigating the ore areas in cycles to allow solutions to percolate into the ore during rest periods. Additionally, RMGC personnel indicated that propane canons are used to deter wildlife when ponding does occur. During this onsite recertification audit, the auditor observed ponding on the active leach area. Temporary netting had not been installed and canons were not in use.
Following the site inspection component of this ICMC audit, RMGC developed and implemented a written policy requiring methods and practices to mitigate wildlife mortalities resulting from cyanide solutions at the heap leach and ADR operations. Methods include hazing, netting, Wet Area Reduction, drip application, pad solution application rotation and spill management. Wet Area Reduction involves placing crushed ore from the Reusable Leach Pads over flat areas of newly placed Run-of-Mine ore to an approximate two-ft depth, and burying drip lines into this zone via ripping or harrowing. Along with the written policy, RMGC provided examples of proper netting practices and an example of the pad solution application rotation (i.e., Flow Schedule), whereby risers at specific lifts are turned on and off to allow solution to percolate through the ore.

Standard of Practice 4.5

Implement measures to protect fish and wildlife from direct and indirect discharges of cyanide process solutions to surface water.

<table>
<thead>
<tr>
<th>The operation is in</th>
<th>☑ Full Compliance with Standard of Practice 4.5.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>☐ Substantial Compliance</td>
</tr>
<tr>
<td></td>
<td>☐ Non-Compliance</td>
</tr>
</tbody>
</table>

Discussion of the basis for this Finding and any Identified Deficiencies:

The SVCO is designed and operated as a zero-discharge facility with no direct discharge to surface water; as a result, there are no established mixing zones. No perennial streams or other surface water features are located within the permitted area of the SVCO or in close proximity. Consequently, RMGC does not conduct surface water monitoring. Although, cyanide solution spills have occurred outside of containment over the three-year period between ICMC recertification audits, surface water has not been impacted.

Standard of Practice 4.6

Implement measures designed to manage seepage from cyanide facilities to protect the beneficial uses of ground water.

<table>
<thead>
<tr>
<th>The operation is in</th>
<th>☑ Full Compliance with Standard of Practice 4.6.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>☐ Substantial Compliance</td>
</tr>
<tr>
<td></td>
<td>☐ Non-Compliance</td>
</tr>
</tbody>
</table>

Discussion of the basis for this Finding and any Identified Deficiencies:

The SVCO is designed and operated as a zero-discharge facility. The project construction and operation include a number of seepage control technologies such as composite liner systems at the heap leach pad consisting of compacted low-permeability soil liner overlain by geomembrane liners, double geomembrane liners with leak detection systems at the process ponds, geomembrane-lined containment channels for solution pipelines, and...
concrete secondary containment in process areas. The facility design and construction meets NDEP standards. The TSF embankment foundation is constructed with an HDPE primary liner underlain by a soil liner.

RMGC conducts regular inspections and monitoring of the TSF and heap leach facilities to ensure that the operating criteria are being met. In addition, regular monitoring of groundwater and leak detection systems is conducted to ensure that the facility is functioning as designed and protective of the environment.

Groundwater use in the RMGC operation area is protected for domestic, mining and milling uses, and the regulatory numerical standard established for groundwater protection is 0.2 mg/L WAD cyanide, for Primary and Secondary Drinking Water Standards. The monitoring results reviewed demonstrate that the operation has not exceeded the above referenced numerical standard for WAD cyanide at the groundwater compliance points, and that the operation is protective of the designated “beneficial use” of groundwater. During the three-year period between ICMC recertification audits, several minor and one significant spill (8.34 pounds of cyanide) occurred, all of which have been remediated fully, with not impacts to groundwater quality.

Standard of Practice 4.7

Provide spill prevention or containment measures for process tanks and pipelines.

<table>
<thead>
<tr>
<th>The operation is in</th>
<th>□ Full Compliance</th>
<th>with Standard of Practice 4.7.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>□ Substantial Compliance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ Non-Compliance</td>
<td></td>
</tr>
</tbody>
</table>

Discussion of the basis for this Finding and any Identified Deficiencies:

All cyanide storage and process solution tanks at the SVCO are located within concrete or lined secondary containment. The cyanide process circuits at the Mill are within concrete containment located outside the Mill building. The process tank foundations and/or containment systems provide an impermeable barrier between the tank bottoms and the ground.

During the 2010 ICMC recertification audit, RMGC provided evidence demonstrating that the secondary containment for all process solution tanks at Round Mountain is sized adequately (i.e., to hold a volume greater than that of the largest tank within each containment and any piping draining back to the tank, and with additional capacity for the design storm event). During this 2013 ICMC recertification audit, RMGC personnel indicated that no new tanks have been added to the Round Mountain process circuits and that containment/tank capacities have not changed. Additionally, the auditor did not observe any such changes. As stated in the as-built report for the Gold Hill facilities, all secondary containment areas at the Gold Hill process facilities are built to contain 110% of the contents of the largest vessel located within the containment area.

The concrete secondary containments provided for the cyanide process tanks at the Mill, and in the South ADR Plant, Dedicated Plant, and Gold Hill ADR Plant buildings have concrete floor sumps with dedicated pumps to collect and remove cyanide solution and slurry spillage for return to the process circuits and/or convey spillage to a
lined solution pond. Daily visual inspections conducted by operations personnel include the physical integrity and available capacity of the secondary concrete containments, lined areas, and ponds. All drains within containments connect to additional containment areas (e.g., process ponds).

All cyanide process solution pipelines at the SVCO are provided with spill prevention or containment measures, including leak detection systems where pipes are below ground. Additionally, operators are required to review HLF pipe flows and pressures routinely and compare results to the previous values. The DCS alerts control room operators when pressure differentials occur. RMGC performs annual nondestructive testing on the HDPE tailings pipeline system between the Mill and the TSF to ensure its physical integrity. All pipes containing cyanide at Gold Hill are provided with secondary containment, consisting of either synthetic liner or clay liner, or both, to provide containment should a spill or leak occur. Leak detection for all primary containment pipes is ensured either by visual inspection (as the pipe is exposed) or by a casing pipe (i.e., pipe-in-pipe system), that is sloped to a daylight area for visual inspection.

RMGC uses black iron, carbon steel, stainless steel, HDPE and polyvinyl chloride (“PVC”) pipelines for conveyance of cyanide solutions and slurries. Cyanide storage and process tanks are carbon steel. These materials are compatible with cyanide and high pH solutions.

RMGC retains all construction documentation associated with its cyanide facilities. The auditor verified onsite retention of construction reports for the HLFs, TSF and process facilities. The documentation is archived in hardcopy and/or electronic format.

The QA/QC documentation described above was prepared by professional engineers registered in the State of Nevada. The construction reports contain statements certifying that the facilities were constructed in accordance with the requirements of the design and/or in general accordance with the approved design drawings and specifications for the project.

Standard of Practice 4.8

Implement quality control/quality assurance procedures to confirm that cyanide facilities are constructed according to accepted engineering standards and specifications.

<table>
<thead>
<tr>
<th>The operation is in</th>
<th>with Standard of Practice 4.8.</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Full Compliance</td>
<td></td>
</tr>
<tr>
<td>☐ Substantial Compliance</td>
<td></td>
</tr>
<tr>
<td>☐ Non-Compliance</td>
<td></td>
</tr>
</tbody>
</table>

Discussion of the basis for this Finding and any Identified Deficiencies:

Please refer to Section 0.3 above for a list of the active cyanide facilities at the SVCO and to the previous ICMC Summary Audit Findings Reports (April 2007 and August 2010) for finding regarding the construction quality assurance and quality control (“QA/QC”) programs implemented for the cyanide facilities in operation during those audits.
New cyanide facilities and modifications to existing cyanide facilities constructed subsequent to the 2010 ICMC recertification audit, include:

- Gold Hill Project (heap leach pad, process and event ponds, ADR Plant and ancillary facilities);
- Construction of the Stage 5 lift of the tailings impoundment;
- Replacement of the tailings delivery pipeline and rehabilitation of its containment channel between the Mill and the TSF; and
- Extension of concrete containment at the Gold Hill cyanide offload/storage facility.

RMGC implemented QA/QC programs during the construction of these facilities as documented by construction reports. The construction QA/QC program conducted for the Gold Hill Project addressed earthworks, concrete, piping, leak detection and synthetic liner installation. During construction activities for the TSF Stage 5 expansion, the design engineer conducted and documented work inspections and collected samples of the filter zone material for testing. During replacement of the tailings delivery pipeline and rehabilitation of its containment channel between the Mill and the TSF, the design engineer documented pipe fabrication and welding results. The completed pipeline was also pressure tested. These memoranda also document quality assurance of the concrete containment pad and curbing added at the Gold Hill cyanide offload/storage facility.

Standard of Practice 4.9

Implement monitoring programs to evaluate the effects of cyanide use on wildlife, surface and ground water quality.

The operation is in Full Compliance with Standard of Practice 4.9.

- [] Substantial Compliance
- [] Non-Compliance

Discussion of the basis for this Finding and any Identified Deficiencies:

RMGC has prepared and implemented written standard procedures for monitoring activities to evaluate the effects of cyanide use on wildlife and groundwater quality. The Sampling Protocol, contained in the Environmental Management and Procedures Manual (“EMPM”), provides standard procedures for monitoring groundwater. The EMPM also includes a Wildlife Management Plan, which addresses procedures for handling live wildlife and wildlife mortalities. At minimum, the Environmental Department reviews the EMPM biannually and performs updates as necessary to reflect current activities at the operation. RMGC intends the EMPM to be a resource for all site personnel and makes the most current version available to employees via the Kinross Connected website.
The procedures describe monitoring locations, rationale, schedules, parameters, sampling, training, and other related procedures. The system addresses both groundwater monitoring and leak detection monitoring. Environmental personnel must complete task training to demonstrate that they are trained and current in the monitoring programs and their requirements before they are allowed to collect water samples without supervision.

The EMPM was developed by RMGC personnel and during the December 2006 ICMC certification audit, the auditors reviewed the qualifications of these personnel and determined that these professionals have university degrees in environmental science disciplines and continue to be involved in ongoing education and training. RMGC currently uses the same protocols. RMGC environmental personnel periodically update the procedure, including this year, to reflect the current WPCPs. The RMGC Environmental Manager reviews updates for approval, has a Bachelor of Science Degree in Natural Resources Management, and possesses over 30 years of experience planning, implementing, and managing environmental programs.

The EMPM provides the procedure for collecting water samples and contains a monitoring schedule in accordance with the WPCPs. The schedule defines sample locations and frequencies. The procedure details the steps for collecting, preserving, and preparing the samples prior to shipment, including shipping and chain of custody procedures. Chain of custody forms specify the analyses requested for each sample. RMGC documents detailed field conditions during groundwater sampling.

RMGC’s monitoring program is designed to adequately characterize environmental media and to identify changes in a timely fashion. As discussed in Section 4.6 above, RMGC conducts quarterly monitoring of groundwater both upgradient and downgradient of the process facilities, with water samples collected quarterly and analyzed in accordance with the WPCPs. The analytical results are reported to NDEP quarterly and annually. Leak detection systems are monitored weekly.

RMGC monitors for wildlife activity and mortalities daily and weekly and submits quarterly Wildlife Mortality Reports to the Nevada Department of Wildlife in accordance with regulatory requirements. Over the three-year period between ICMC recertification audits, cyanide-related wildlife mortalities have occurred at Round Mountain caused by ponding on the heap leach pads, damaged deterrent systems at solution ditches, and in one case, an open valve. No such mortalities have occurred at the Gold Hill HLF. None of these wildlife mortalities resulted from the lack of sufficient bird balls in the process solution ponds as discussed under Section 4.4 above.
5.0 DECOMMISSIONING

Protect communities and the environment from cyanide through development and implementation of decommissioning plans for cyanide facilities.

Standard of Practice 5.1

Plan and implement procedures for effective decommissioning of cyanide facilities to protect human health, wildlife and livestock.

☐ Full Compliance
☐ Substantial Compliance
☐ Non-Compliance

The operation is in [Full Compliance] with Standard of Practice 5.1.

Discussion of the basis for this Finding and any Identified Deficiencies:

As a condition of its Reclamation Permit with the State of Nevada, and in accordance with state and federal regulations governing the reclamation of mined lands, RMGC submits a Comprehensive Reclamation Plan (“CRP”) and Bond Cost Estimate for review and approval by the NDEP and the BLM, the federal land manager.

The 2013 CRP contains a summary of closure measures planned for cyanide facilities in sufficient detail to allow estimation of third party implementation costs. As the actual commencement of closure and reclamation approaches, RMGC will provide additional procedural details in the final CRP as necessary to fully implement closure obligations. The 2012 CRP and Bond Cost Estimate presents a general project schedule that addresses approximate timeframes for operations, closure, reclamation, and post-mining monitoring. RMGC is updating this schedule as part of a pending amendment to its Plan of Operations currently under review by NDEP and BLM.

RMGC reviews its closure and reclamation procedures and submits an updated CRP and Bond Cost Estimate to NDEP and the BLM on an annual basis. This annual commitment is not a regulatory requirement and is based on an agreement between RMGC and the two agencies. BLM and NDEP review the closure and reclamation procedures and cost estimate jointly for completeness and bond sufficiency. In accordance with regulatory requirements, RMGC is required by the NDEP and BLM regulations to review and update its reclamation plan and associated costs at least every three years. The most recent update is the 2013 CRP, dated April 25, 2013.
Standard of Practice 5.2

Establish an assurance mechanism capable of fully funding cyanide related decommissioning activities.

- ☑ Full Compliance
 - The operation is in full compliance with Standard of Practice 5.2.
- ☐ Substantial Compliance
- ☐ Non-Compliance

Discussion of the basis for this Finding and any Identified Deficiencies:

The 2013 CRP updates the RMGC Plan of Operations, as amended in 2010, which allowed for the expansion of operations at the SVCO and development of new operations at Gold Hill (referred to as the Round Mountain Expansion project). Due to the extended life of the Round Mountain Expansion and because many of those facilities will not be constructed to their full extent for a number of years, RMGC is completing reclamation bonding for the Round Mountain Expansion project in phases, where each phase of bonding includes only those facilities that will be constructed within the three-year bond period. Accordingly, disturbance acreages and associated reclamation activities provided in the 2013 CRP only include the first phase of Round Mountain Expansion project development.

RMGC uses the most current version of the Standardized Reclamation Cost Estimator (“SRCE”), a cost-estimating program developed and approved by BLM and NDEP, to prepare annual bond updates. RMGC developed a reclamation cost estimate (referred to as the Bond Cost Estimate), which summarizes the bond obligation amount that RMGC posts to obtain authorization for construction of the first phase of the proposed facilities during the first three years of the Round Mountain Expansion project development. Upon renewal of the Phased Reclamation Plan, RMGC will revise the Bond Cost Estimate to incorporate any additional facilities that will be constructed during the next three-year bond period. All bond estimates are based on third-party implementation of the closure and reclamation activities, and include indirect costs such as Engineering and Design, Contingency, Insurance, Performance Bond, Contractor Profit, Contract Administration, and BLM Indirect Costs.

The BLM currently holds four reclamation bonds, which guarantee surface reclamation for operations conducted by RMGC under its Plan of Operations. The bond for the SVCO is provided by various financial instruments, including two letters of credit, a surety, and a corporate guarantee. The obligors include RMGC, Barrick (HMC) Mining Company, and Bargold Corporation.
6.0 WORKER SAFETY

Protect workers’ health and safety from exposure to cyanide.

Standard of Practice 6.1

Identify potential cyanide exposure scenarios and take measures as necessary to eliminate, reduce and control them.

<table>
<thead>
<tr>
<th>The operation is in</th>
<th>with Standard of Practice 6.1.</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Full Compliance</td>
<td></td>
</tr>
</tbody>
</table>

Discussion of the basis for this Finding and any Identified Deficiencies:

RMGC implements Task cards, which address working with cyanide in the operation of its cyanide facilities. These Task Cards identify potential health hazards, cyanide exposure hazards, worker training requirements, general precaution/safety and PPE requirements, pre-work inspections, operating procedures, requirements for equipment decontamination and emergency response. Each of the Cyanide Safety Task Cards contains specific instructions for equipment decontamination prior to maintenance. The overall system has not changed since the initial certification ICMC audit conducted in 2006, but each Task Card has been reviewed and dated, and this was repeated since the 2010 ICMC recertification audit. When RMGC makes changes to Task Cards, the revision date is noted.

Operators complete pre-work area inspections at the start of each shift to identify hazards that could result in injury, process loss or equipment damage, and the inspection checklists are specific for Round Mountain and Gold Hill operations. These documented inspections include process equipment, piping, ponds, pumps, fencing, netting, as well as safety equipment. Recent records are filed at each process plant and periodically archived. Pre-work inspections are undertaken prior to cyanide truck/trailer unloading, and include checks for proper PPE and functionality of controls.

Subsequent to the 2010 ICMC recertification audit, RMGC established procedures and responsibilities for retention of RMGC records identified as necessary for full compliance with the ICMC and in accordance with Kinross policy. This practice was verified during this 2013 ICMC recertification audit.

RMGC uses several risk assessment models, depending on what is being changed or modified (e.g., a task, a process, a project). The Risk Assessment Worksheet can trigger a Job Hazard Analysis; a new practice implemented in January 2013. Early in 2013, RMGC developed an “EHS Management of Change Screening Checklist” for supervisors, with input from Environment, Safety, and Projects personnel. Use of this screening tool is not a mandatory requirement, but is available, as needed. Additionally, RMGC uses the Kinross Authorization for Expenditure procedure when applying for capital and/or project funding. The procedure includes a formal
environmental and health and safety review of the proposed project and sign-off by various management
departments. Since the 2010 ICMC recertification audit, Kinross Corporate has developed a *Project Review
Checklist for International Cyanide Management Code Compliance* for use by operations in instances where it is
identified that cyanide may be affected by the proposed change.

Crew/shift workers attend weekly tailgate safety meetings where RMGC encourages open discussion. These
meetings provide opportunities for workers to discuss work issues and ways to improve safety.

Standard of Practice 6.2

*Operate and monitor cyanide facilities to protect worker health and safety and periodically evaluate the
effectiveness of health and safety measures.*

<table>
<thead>
<tr>
<th>The operation is in</th>
<th>Full Compliance</th>
<th>Substantial Compliance</th>
<th>Non-Compliance</th>
</tr>
</thead>
</table>

Discussion of the basis for this Finding and any Identified Deficiencies:

Controlled through monitoring and manual adjustment, RMGC maintains the pH level in the cyanide circuit above
10.0 to prevent generation of HCN gas in the workplace. Sodium cyanide is delivered to the mine in liquid form at
a pH of 12.7, minimizing the potential for HCN gas generation during unloading operations. The audit report
prepared for the 2010 ICMC recertification audit, inadvertently reported this pH value as 10.7.

Fixed HCN gas detectors, monitored twice each shift, are located in areas where RMGC has determined HCN gas
generation to be a potential concern. RMGC understood that each fixed unit was fitted with two alarm points, set
to trigger at 4.7 ppm and 10 ppm HCN. However, the auditor determined that (a) RMGC’s fixed HCN detectors did
not alert at 4.7ppm, and (b) RMGC did not have site-wide consistent HCN exposure criteria. Therefore, subsequent
to the field component of this audit, RMGC provided evidence demonstrating site-wide consistency for HCN
exposure criteria and for monitor alarms information and implemented site-wide communication to convey this
information to its workforce.

Since the 2010 ICMC recertification audit, RMGC has changed the calibration and maintenance procedures for
fixed HCN monitors, which are now more robust. There are new portable HCN meters, calibrated on an ongoing
self-calibrating base. The auditor reviewed and determined the records for 2010 to date to be complete for both
the fixed and portable units.

Prior to this ICMC recertification audit, RMGC had not conducted ambient area and personal exposure sampling
(industrial hygiene exposure monitoring) for HCN, and there was no baseline survey data to support the placement
of the fixed HCN monitors. Therefore, subsequent to the field audit, RMGC conducted ambient area exposure
sampling for HCN using NIOSH Method 6010 and an AIHA-accredited laboratory for sample analysis and issued a
report summarizing the results of the sampling (all average concentrations were below 4.7 ppm HCN). There have not been any incidents of HCN exposure or overexposures reported.

During this 2013 ICMC field audit, the signage for Round Mountain was mostly in good condition, although some of the signage at Round Mountain had deteriorated (although still adequate). However, RMGC had not properly assessed Gold Hill and the process areas did not have adequate cyanide warning signs or warning signs that smoking, eating and drinking is not permitted, particularly in areas outside the fence surrounding the ADR Plant. The auditor noted this deficiency during the field audit, and RMGC installed additional signage at various locations (at both Round Mountain and Gold Hill). Additionally, following the field component of this audit, RMGC conducted a more comprehensive assessment to identify requirements for installing additional signage at Gold Hill and provided photographic evidence demonstrating the installation of new cyanide signage in critical areas.

Emergency showers and eyewash stations are located in or near all operational areas involving high concentrations of cyanide and other hazardous chemicals. Inspection frequency and records are appropriate. Shower and eyewash stations were spot-checked during this audit and all were operating with adequate flow and within maintenance criterion to ensure low-pressure operation of eyewashes. All emergency showers and eyewash stations have tempered water. Fire extinguishers are checked monthly, and have annual maintenance. The auditor reviewed and found records for 2010-2013 to be complete. Spot checks of extinguishers were made during the field inspection, with tags on the extinguishers observed to be clearly marked.

At the time of the 2010 ICMC recertification audit, Material Safety Data Sheet (“MSDS”) binders were observed in process areas where cyanide is handled. Kinross Corporate and RMGC now rely solely on an online internet/intranet service that provides copies of MSDS to employees on request; thus, RMGC no longer maintains hardcopy binders in the process areas.

Posters, posted in strategic locations, provide information on cyanide hazards, exposure symptoms, handling precautions, and first aid. First aid procedures and other information on cyanide are also provided. The spoken and working language at RMGC is English.

The RMGC uses its incident investigation procedure to document and investigate all incidents and near misses that occur at the mine. RMGC has not had a cyanide related incident since the initial 2006 ICMC certification audit.

Standard of Practice 6.3
Develop and implement emergency response plans and procedures to respond to worker exposure to cyanide.

- [x] Full Compliance
- [] Substantial Compliance with Standard of Practice 6.3.
- [] Non-Compliance

Discussion of the basis for this Finding and any Identified Deficiencies:
Since the 2010 ICMC recertification audit, RMGC has integrated Gold Hill into its emergency response procedures. Cyanide antidote kits are in appropriate locations. All cyanide unloading/storage areas have readily accessible emergency equipment. The location of emergency kits and eyewash/shower operation were checked during the auditor’s field walkabout; antidote kits were unexpired and sealed with zip ties.

All personnel with cyanide management responsibilities have cell phones or access to radio communications. TransWood drivers are provided with RMGC radios as they enter the site. There are visual and audible warnings in the event of an emergency (e.g., HCN gas concentrations greater than 10 ppm). When emergency responders are required during an incident, a “Code Blue” is activated through radio announcement.

The Task Card “Cyanide Safety” provides training requirements and a knowledge base for recognizing cyanide exposure symptoms and administering first aid. All plant operators are trained in the recognition of cyanide exposure symptoms, the application of oxygen, and administration of amyl nitrite antidote through Cyanide Safety Training and annual refresher training and the new “CN Code at RMGC” video. Although the State of Nevada does not permit the RMGC Emergency Medical Technicians (“EMTs”) to administer amyl nitrite, shift workers are able to administer it through the Good Samaritan Law, or can be coached by an EMT.

The mine has its own emergency medical staff and an ambulance to transport a patient to Nye Regional Medical Center if needed. The basic call-out procedure has not changed since the 2006 and 2010 ICMC audits. RMGC has a Memorandum of Understanding (“MOU”) with Nye County to provide its ambulance and EMT staff for offsite emergencies when requested. Formalized arrangements with local medical providers were revised since the 2010 ICMC recertification audit. The MOU with Nye Regional Medical Center was re-signed for another five-year period, and a Reciprocal Aid Agreement was established. RMGC has an onsite clinic available to its employees, supplemented by Nye County medical facilities in Tonopah, Nevada. Both facilities were briefed on the potential for a cyanide related incident and have the capabilities of treating cyanide exposure. RMGC has onsite EMT volunteer staff, and works on a frequent basis with Nye County EMTs. Many of Nye County’s EMT personnel are RMGC employees.

EMTs and emergency personnel participate in monthly mock rescue or scenario training sessions. Records of these training sessions are maintained, a change from the 2010 ICMC recertification audit. At least two sessions per year directly involve cyanide, while others may involve hazardous material response or other scenarios that could be associated with a cyanide-related emergency. Mock drills are reviewed and critiqued by participants and observers, and lessons learned incorporated into emergency response procedures. The newly implemented Kinross Crisis and Emergency Management System (“KCMS”) provided training for all management members in 2012, and provided an on-line tabletop mock drill in January 2013. Subsequent to the 2010 ICMC recertification audit, RMGC developed a written procedure that provides guidance on analyzing, reporting and tracking recommendations for improvement of emergency response performance identified during the critique.
7.0 EMERGENCY RESPONSE

Protect communities and the environment through the development of emergency response strategies and capabilities.

Standard of Practice 7.1

Prepare detailed emergency response plans for potential cyanide releases.

☑ Full Compliance

☐ Substantial Compliance

☐ Non-Compliance

The operation is in compliance with Standard of Practice 7.1.

Discussion of the basis for this Finding and any Identified Deficiencies:

RMGC has an Emergency Response Manual (“ERM”), which addresses all types of emergencies that could occur at the mine, including hazardous materials emergencies and cyanide response. The ERM is divided into five parts: Emergency Management Guidelines; Communications; Emergency Utilities Shutdown; Emergency Response Guidelines, and Hazardous Material Response Guidelines. In 2012, RMGC adopted, implemented and trained management on the KCMS, for addressing communication of information during emergency/crisis situations. The KCMS supplements the ERM by providing responsibilities for crisis communication, and Kinross Corporate involvement.

Similar to evidence provided in the 2010 ICMC recertification audit, the RMGC “Spill Response Plan – Cyanide” indicates that RMGC considered all items under this ICMC Standard of Practice as potential failure and release scenarios. RMGC considers the plan appropriate for responding to all cyanide emergencies that could likely occur at the mine. RMGC revised Section 5.8 of the ERM to identify and differentiate response for 24-32% solution strength, as well as minor spills.

Cyanco continues to be responsible for responding to cyanide releases and incidents during transportation, and by contractual obligations, RMGC does not take control of the cyanide until Cyanco delivers it into the RMGC system at the cyanide offload/storage facilities. If a transportation spill did occur, RMGC emergency responders would provide assistance, as required. In the event of a release during shipment, the “Cyanide Response Plan” indicates that the Nye County “Round Mountain” Fire Department’s HazMat team will respond, limited to delineating and securing the area and containing any release.

The structure of the ERM has not changed since the 2006 or 2010 ICMC audits, with the exception of the inclusion of Gold Hill, with similar protocols. The ERM defines the roles and responsibilities for managers, supervisors, security, and shift workers and outlines the procedures and responsibilities for the emergency shutdown of utilities and process equipment. It also lists the primary and alternate assembly areas used during an evacuation.
Round Mountain is approximately 1.7 miles from the nearest community; therefore, the plan does not detail response actions for evacuating communities, as the risk of such an event is considered as extremely low, and due to distance from the process facilities, the community is unlikely to be affected. Nonetheless, RMGC would coordinate with Nye County Fire Department to respond to a catastrophic event, which caused impact beyond the mine boundary and required evacuation of the neighboring communities.

Standard of Practice 7.2

Involve site personnel and stakeholders in the planning process.

- **Full Compliance**
- **Substantial Compliance**
- **Non-Compliance** with Standard of Practice 7.2.

Discussion of the basis for this Finding and any Identified Deficiencies:

The RMGC workforce is regularly included in emergency response planning through review and discussion of lessons learned from recent incidents and near misses. All personnel that work with or around cyanide are required to participate in Cyanide Safety training and annual refresher training and to view videos regarding cyanide response. These forums give workers input into improving site safety, including emergency response. The emergency response team was included in the preparation of the “Cyanide Response Plan”. Emergency responders conduct monthly training exercises that include cyanide incident response.

The local community volunteer Fire Department is primarily made up of responders that are also RMGC employees; thus, there is a strong relationship between RMGC and the Round Mountain Fire Department. As discussed in Section 6.3 above, RMGC has a current MOU with Nye Regional Medical Center.

In the last three years, RMGC has conducted two mock drills that included participation and input from outside responders. The 2013 mock scenario was a tabletop exercise, which implemented the new KCMS Protocols.

Community outreach practices have not significantly changed since the December 2010 ICMC recertification audit. The communities directly affected by the mine include the old town of Round Mountain and the Hadley subdivision. Virtually all residents of these communities are RMGC employees or immediate family members; therefore, the use of cyanide in mineral extraction is well understood at the community level. Prior to the commissioning of Gold Hill, RMGC conducted community information sessions.

As indicated in the 2010 ICMC recertification audit, in 2008, with cooperation from the local community, a review of local emergency response capability was conducted against the United Nations “Awareness and Preparedness for Emergencies at Local Level” Guideline (“APELL”). The agreement included a commitment by the APELL coordinating group to keep their emergency plans updated and properly communicated to members of the group.
Standard of Practice 7.3

Designate appropriate personnel and commit necessary equipment and resources for emergency response.

<table>
<thead>
<tr>
<th>Operation Status</th>
<th>Full Compliance</th>
<th>Substantial Compliance</th>
<th>Non-Compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>The operation is in</td>
<td>☒ Full Compliance</td>
<td>☐ Substantial Compliance</td>
<td>☐ Non-Compliance</td>
</tr>
</tbody>
</table>

Discussion of the basis for this Finding and any Identified Deficiencies:

The ERM lists and designates primary and alternative emergency/incident response coordinators and identifies their responsibilities. The audit report prepared for the 2010 ICMC recertification audit referenced a Loss Control Management Plan, which documented emergency measures. The Loss Control Management Plan was replaced by the corporate KCMS, as detailed in Section 6.3 above. These response team members have the authority to commit the necessary resources to implement the emergency response plan.

RMGC has trained members in the categories of fire, mine rescue, EMT, first responder, and HazMat, with emergency response coverage 24 hours per day. RMGC maintains an updated emergency response team contacts list and roster for each crew. Emergency response personnel participate in monthly training, with session topics selected annually and preapproved by Nevada State, a requirement for maintaining EMT certification.

Standard of Practice 7.4

Develop procedures for internal and external emergency notification and reporting.

<table>
<thead>
<tr>
<th>Operation Status</th>
<th>Full Compliance</th>
<th>Substantial Compliance</th>
<th>Non-Compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>The operation is in</td>
<td>☒ Full Compliance</td>
<td>☐ Substantial Compliance</td>
<td>☐ Non-Compliance</td>
</tr>
</tbody>
</table>

Discussion of the basis for this Finding and any Identified Deficiencies:

The ERM “On Site Emergency Response” provides on-site emergency response contact procedures and identifies responsibilities for responding and reporting. The ERM “Emergency Contact Authorization” lists RMGC contacts authorized to contact corporate, regulatory safety compliance, regulatory environmental compliance, medical facilities, and stakeholders. The internal/external emergency contact listing reviewed during this ICMC audit was current to July 2013.

The ERM “Family Liaison” requires that all communication with media and families (in the case of a critical injury) must be by the General Manager; and indicates that state law requires all communication from the coroner or law enforcement in the case of a fatality.
Standard of Practice 7.5

Incorporate into response plans and remediation measures monitoring elements that account for the additional hazards of using cyanide treatment chemicals.

<table>
<thead>
<tr>
<th>The operation is in</th>
<th>Full Compliance</th>
<th>with Standard of Practice 7.5.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Substantial Compliance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-Compliance</td>
<td></td>
</tr>
</tbody>
</table>

Discussion of the basis for this Finding and any Identified Deficiencies:

The ERM outlines the RMGC “Spill Response Plan – Cyanide”. The Plan provides actions to be taken to respond to cyanide spills including requirements for containing the spill, using calcium hypochlorite for cyanide destruction and disposal of cyanide-contaminated soil onto the active leach pad. The Plan also describes the use of an earthen berm to contain cyanide spills. Spilled solutions and carbon granules would be recycled back in the process. The standard operating procedure “Collection of Samples and Remediation of Cyanide Contaminated Material” details confirmation soil sampling procedures and remediation criteria, and the use of calcium hypochlorite.

Drinking water supply wells are a considerable distance from the site, and are highly unlikely to be affected by any spills. Monitoring well data show non-detectable concentrations of cyanide since monitoring was first initiated in 1987. Because impact to drinking water is not considered a risk, the provision of alternative supply is not considered relevant to the response plan. Additionally, there are no perennial surface water bodies on or adjacent to the mine site.

Standard of Practice 7.6

Periodically evaluate response procedures and capabilities and revise them as needed.

<table>
<thead>
<tr>
<th>The operation is in</th>
<th>Full Compliance</th>
<th>with Standard of Practice 7.6.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Substantial Compliance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-Compliance</td>
<td></td>
</tr>
</tbody>
</table>

Discussion of the basis for this Finding and any Identified Deficiencies:

Subsequent to the 2010 audit, and at the request of the audit team, RMGC developed a written procedure that was incorporated into the ERM, which clearly assigns roles and responsibilities for update, maintenance, and management of electronic and controlled hard copies of the ERM. To demonstrate that the procedure had been implemented, RMGC provided the auditors with a copy of the updated ERM and a memo signed by staff acknowledging their understanding of the procedure and their roles and responsibilities. During this 2013 ICMC recertification audit, RMGC demonstrated continued implementation of this procedure.
The RMGC “Spill Response Plan – Cyanide” is an integral part of the ERM. At the time of this ICMC audit, the plan did not specifically address solution types (strong versus weak) or quantities; however, RMGC addressed both of these items and provided an updated version.

As part of the MOU with Nye County, the Round Mountain Fire Department assumed responsibility for maintaining the response equipment and responding to all HazMat emergencies on or off the mine site.

Incidents and near misses are discussed with workers during weekly tailgate meetings. These meetings provide a forum for open discussion and an opportunity for suggesting changes to operating procedures, including emergency response. As detailed in Section 9.3 below, one emergency response incident involving cyanide occurred over the past three years following the 2010 ICMC recertification audit.
8.0 TRAINING

Train workers and emergency response personnel to manage cyanide in a safe and environmentally protective manner.

Standard of Practice 8.1

Train workers to understand the hazards associated with cyanide use.

| The operation is in | ☑ Full Compliance | Substantial Compliance | Non-Compliance | with Standard of Practice 8.1. |

Discussion of the basis for this Finding and any Identified Deficiencies:

RMGC provides all new hires with a one-week orientation to the mine site, which includes a site tour, and among other topics, hazard recognition, first aid training, fire safety, emergency escape procedures, security, respirator fit testing and training, safe work rules and a new work place orientation. General hazard awareness training includes cyanide awareness and safety prior to being permitted to enter cyanide areas. This orientation training is a requirement of the Mine Safety and Health Administration (“MSHA”) 5000-23, and covers corporate policy, general site safety including cyanide hazards, emergency response, signage and PPE requirements, and traffic rules. Additionally, new hires view a short video produced by RMGC in 2013, titled “CN Code at RMGC”, and in 2012, RMGC produced a video titled “Cyanide Hazard Awareness and Antidote Training”, which RMGC now uses during orientation as it provides a comprehensive synopsis of cyanide use and hazards.

Workers assigned to areas where cyanide is used, attend Cyanide Safety training, which addresses properties and characteristics of cyanide; personal hygiene; precautions and safety rules; effects of HCN gas; symptoms of cyanide poisoning, and first aid and antidote treatment. Please refer to Section 8.2 below for additional detail.

The Processing Training Supervisor provides an annual refresher course for all RMGC staff assigned to areas where there is potential handling or use of cyanide. The refresher training includes reference to the ICMC, uses of cyanide, cyanide manufacturer, MSDS, physical and chemical characteristics, importance of pH, routes to exposure, cyanide poisoning, high risk areas at the site, symptoms and first aid (including application of amyl nitrite and oxygen), delivery truck design and safety features, safe handling of cyanide, personal hygiene, and detoxification of cyanide. Commencing in summer 2012, this annual cyanide refresher has become a component of the monthly, one-hour Annual Refresher Training materials. Cyanco also provides resources and training during its annual Cyanco Trainers Day.

Cyanide training records are retained for all management, supervisors and operations staff that encounter, handle or have the potential to use cyanide in their work activities.
Standard of Practice 8.2

Train appropriate personnel to operate the facility according to systems and procedures that protect human health, the community and the environment.

[] Full Compliance
[] Substantial Compliance
[] Non-Compliance

The operation is in Full Compliance with Standard of Practice 8.2.

Discussion of the basis for this Finding and any Identified Deficiencies:

As mentioned in Section 8.1 above, workers assigned to areas where cyanide is used, attend Cyanide Safety training, which addresses properties and characteristics of cyanide; personal hygiene; precautions and safety rules; effects of HCN gas; symptoms of cyanide poisoning, and first aid and antidote treatment. Specific instructions related to the handling, use and management of cyanide on a day-to-day basis are documented in Task Cards that relate to major job functions. The Task Cards describe task-specific training requirements, provided by either a dedicated trainer or the responsible supervisor. Employees/trainees are not permitted to work unattended (in either new jobs or transferred jobs) until both the employee and supervisor sign-off on all aspects of the individual Task Cards, based on comfort level and performance.

TransWood drivers complete Cyanco cyanide safety training as well as RMGC Site Hazard training prior to being allowed onto the mine site and RMGC personnel escort the drivers until they complete site-specific pit driver training. Only the TransWood drivers with current training are permitted on site, and this is verified through online tracking records at the Security main gate prior to entering.

Dedicated RMGC training specialists provide training. The RMGC training resources have increased since the 2010 ICMC recertification audit, which speaks to the commitment by the site to ensure safety and appropriate training and record keeping. The Processing Training Supervisor has the primary responsibility for training RMGC staff that work with cyanide on a day-to-day basis. The Processing Training Supervisor is an MSHA-certified instructor and has attended the “cyanide safety train-the-trainer” course provided by Cyanco. The RMGC training videos were created in conjunction with the Processing Training Supervisor and an RMGC metallurgist, which demonstrates the apparent training knowledge and communication skills.

All new hire and refresher training concludes with a written exam/quiz. RMGC considers specific Task Card training complete when the trainee and the trainer/supervisor are mutually satisfied that the training skills and/or knowledge have been achieved and the job/task is thoroughly understood. The trainee and trainer/supervisor acknowledge the training and understanding by countersigning and completing the record. Certain tasks require a minimum number of training hours and RMGC also reviews worker competence through task observation. RMGC maintains all cyanide training records for the full length of an individual’s employment with the company.
Standard of Practice 8.3

Train appropriate workers and personnel to respond to worker exposures and environmental releases of cyanide.

The operation is in Full Compliance with Standard of Practice 8.3.

Discussion of the basis for this Finding and any Identified Deficiencies:

Task Cards or standard procedures that relate to major job functions document specific instructions related to the management, handling and use of cyanide on a day-to-day basis, including cyanide facility operations and maintenance. Additionally, Task Cards define task-specific training requirements, and either a designated trainer or the responsible supervisor provides task training. RMGC receives cyanide in liquid form and does not mix cyanide; therefore, offloading personnel are limited to the RMGC operators who monitor the TransWood drivers.

Several crew/shift workers at the Mill and process areas are members of the Emergency Response Team/Mine Rescue Team and some are members of the Round Mountain Fire Department HazMat Team. These response team members are trained by Nye County in HazMat response, decontamination procedures and use of self-contained breathing apparatus (“SCBA”). Additionally, the Mine Rescue team participates in State and National emergency response competitions to further hone their emergency response skills.

Emergency Response Team members undertake monthly emergency response training in the form of theory, mock drills and tabletop scenarios in order to maintain their EMT status. RMGC uses these training sessions to train the Emergency Response Team in use of emergency equipment and procedures as set out in the ERM and to test the effectiveness of the team’s actions. Since the 2010 ICMC recertification audit, RMGC has integrated Gold Hill into the Emergency Response Team membership and training. At least two Emergency Response Team sessions each year relate directly to and include cyanide.

Multifaceted cyanide emergency response drills are held every few years. These drills test the ERM and Crisis Management procedures and provide tabletop and/or practical training for emergency response coordinators and the local crisis management team. All onsite training involving RMGC emergency response personnel is made available to Nye County Regional Medical Center staff and local Emergency Medical Services (“EMS”) and HazMat representatives. Mock drills conducted in 2010 and 2011 included participation by the Round Mountain Fire Department and HazMat team, and RMGC Ambulance (EMT). RMGC has a Reciprocal Aid Agreement with the Nye County Regional Medical Center for the provision of cyanide emergency medical services, updated and renewed in January 2013.

Since the 2010 ICMC recertification audit, RMGC has implemented the KCMS and training protocols for all supervisors and managers. This new program provides an individual profile status for each management team.
member, with an outline of teams/roles assigned, online training required and taken, and a record of documentation. RMGC rolled out this new system in 2012 with training for all supervisors and managers.

As outlined in Section 8.1 above, the Processing Training Supervisor provides an annual refresher course for all RMGC staff assigned to areas where there is handling or use of cyanide and the Emergency Response Team completes monthly emergency response training to maintain their EMT status. This training includes cyanide incident response. The Round Mountain Fire Department HazMat also conducts annual SCBA fit test training.

RMGC maintains all cyanide training records for the full length of an individual’s employment with the company. Attendance records and correspondence are retained, which demonstrate that local non-RMGC emergency personnel have participated in cyanide hazard awareness and emergency response training as well.
9.0 DIALOGUE

Engage in public consultation and disclosure.

Standard of Practice 9.1

Provide stakeholders the opportunity to communicate issues of concern.

The operation is in ☑ Full Compliance with Standard of Practice 9.1.

☐ Substantial Compliance

☐ Non-Compliance

Discussion of the basis for this Finding and any Identified Deficiencies:

RMGC provides several means for stakeholders to communicate issues of concern regarding cyanide use and management at the mine. These include site tours, corporate websites and public comment.

RMGC has adopted the Kinross Corporate Health & Safety Policy, which includes “Maintaining a Safe & Healthy Workplace, Ensuring Worker Competence, and Open & Transparent Communication”. Similarly, the Kinross Corporate Environmental Policy includes a commitment to “Engage our Stakeholders” and to “Promote an ongoing environmental dialogue, maintained in a spirit of transparency and good faith, with our stakeholders in the communities where we operate. (And) Collaborate with stakeholders to define environmental priorities and to contribute to the development of responsible laws and regulations to protect the environment”.

In keeping with this policy, RMGC created the position of Corporate Responsibility Coordinator. This position is responsible for coordinating communications with the local community and other external stakeholders that may express concerns or interests in the management of cyanide. Inquiries are typically received via the switchboard, e-mail, or letter correspondence, and are routed to the Corporate Responsibility Coordinator for discussion with the General Manager and other management representatives. Contact numbers/addresses for the Corporate Responsibility Coordinator are made available to the public through participation in public and community functions and outreach opportunities. RMGC maintains records of all such participation and events.

The mine has continued a very open policy of providing guided tours to a wide variety of individuals, groups, and organizations (e.g., government representatives, school and college groups, family members of mine workers, tribal organizations, visiting staff from other mines and countries). Over the last three years, over 1,000 visitors per year have received tours.
Standard of Practice 9.2

Initiate dialogue describing cyanide management procedures and responsively address identified concerns.

<table>
<thead>
<tr>
<th>The operation is in</th>
<th>✓ Full Compliance</th>
<th>□ Substantial Compliance</th>
<th>□ Non-Compliance</th>
</tr>
</thead>
</table>

Discussion of the basis for this Finding and any Identified Deficiencies:

As previously noted in Section 9.1 above, RMGC has a very open policy regarding site tours involving local residents and a wide range of other stakeholders and groups (e.g., schools, colleges, other country regulators). Most members of the communities of Hadley and Round Mountain are RMGC employees or immediate family; thus, RMGC is an active participant in virtually all community functions and meetings, which continue to be coordinated through the Corporate Responsibility Coordinator. Regular contact with community councils, community emergency response (HAZMAT) teams, and law enforcement officials is maintained through that office, as well as through the active participation of RMGC employees.

RMGC publishes a biweekly newsletter “*The Valley View*”, which targets an annual article and other articles on cyanide, if necessary, in order to evenly distribute information regarding cyanide over time. For example in the February 14, 2013 publication of the newsletter, a specific article entitled “*Mining Chemistry 101: Cyanide*” was the cover story, providing a summary of process and use of cyanide.

Standard of Practice 9.3

Make appropriate operational and environmental information regarding cyanide available to stakeholders.

<table>
<thead>
<tr>
<th>The operation is in</th>
<th>✓ Full Compliance</th>
<th>□ Substantial Compliance</th>
<th>□ Non-Compliance</th>
</tr>
</thead>
</table>

Discussion of the basis for this Finding and any Identified Deficiencies:

The Kinross website provides access to a detailed Round Mountain Technical Report that describes RMGC’s cyanide management facilities in very general terms (http://kinross.com/operations/operation-round-mountain-usa.aspx). As mentioned in Section 9.2 above, in the years since both the December 2006 and April 2010 ICMC audits, RMGC has produced information in its biweekly newsletter (*The Valley View*) addressing aspects of cyanide management (these newsletters are available to the workforce and its families).

RMGC has developed and implemented significant changes for tours since the April 2010 ICMC recertification audit. Specific written guidance has been prepared on sharing written information about cyanide management in this context. In September 2012, RMGC updated and replaced its tri-fold brochure and all visitors are provided
with the new brochure and are required to sign the "Tour Sign In Sheet" which verifies for each participant "By signing this I acknowledge I have received a CN Informational Brochure". Such tour participants and new-hire employees are provided with information including, but not limited to, the tri-fold brochure, an informational guide to RMGC operations, process flow diagrams, and a DVD. All information is in English.

RMGC maintains current Spill Response Procedures in its EMPM. The procedures designate clear internal responsibilities and accountabilities in the event of a spill, and detail what response and actions are required for various scenarios, including internal and external notifications. The EMPM provides clear guidance for the Comprehensive Environmental Response, Compensation, and Liability Act ("CERCLA") and/or the Emergency Planning and Community Right-to-Know Act ("EPCRA") reporting.

Since the April 2010 ICMC recertification audit, none of the following incidents have occurred:

- cyanide exposures resulting in hospitalization or fatality;
- cyanide releases off the mine site;
- cyanide releases on or off the mine site resulting in significant adverse effects to health or the environment; or
- cyanide releases that have caused applicable limits for cyanide to be exceeded.

Nor have any such incidents occurred during the life of the mine. In such circumstances, RMGC’s emergency response and environmental spills reporting protocols would require notification of the appropriate regulatory authorities, including MSHA in accordance with Title 30, Part 50 of the Code of Federal Regulations ("CFR"), as well as Kinross and Barrick management representatives.

However, there was an on- and off-site environmental incident that occurred on December 28, 2011 whereby a valve in the process piping system (i.e., barren solution header pipe) at the West Dedicated Heap Leach Pad failed, causing process solution to flow down the heap into a lined solution collection channel. The channel became overwhelmed at a road access overpass and the solution escaped containment and flowed off site. It was estimated that 18,000 to 20,000 gallons of process solution was released to the environment (i.e., surface soils only). RMGC took corrective actions immediately to address the situation, including shut down of process solution feed, berming of roadways and ditches to contain the material, and removal of the impacted soil.

Remedial action was undertaken within one hour of discovering the release. RMGC immediately determined the quantity of process solution released in accordance with normal operations, with the approximate cyanide loading of 0.10 pounds of cyanide per ton of process solution. RMGC reported the release to the State of Nevada Spill Reporting 24-hour response line, as the quantity released reached the threshold quantity per the SVCO permits and State Regulations. This incident did not trigger reporting to the U.S. Environmental Protection Agency ("EPA") or National Response Center as the estimated amount of cyanide released was 7.5 to 8 pounds, and the Federal reportable quantity is 10 pounds. The impact was to surface soils within the mine permit boundary authorized by BLM, with less than 10% of total impact to lands outside the boundary.
RMGC contacted the BLM Tonopah Field office and BLM staff assisted with and agreed to the proposed remedial plan. Further discussion and guidance was provided by the NDEP, with remediation involving soil removal and replacement. RMGC completed cleanup activities on December 31, 2011 and subsequently placed growth media and reseeded the affected area. The Kinross Manager Environmental Affairs reported this incident to the ICMI on December 29, 2011 via written correspondence. On January 6, 2012, RMGC filed a “Hazardous Materials Release Follow-Up Report” (Report No. 111229-01) with NDEP (with a copy to BLM) regarding this incident. The report is available to the public via NDEP at 901 S. Stewart Street, Suite 4001, Carson City, Nevada 89701. The NDEP reference number for the spill is NDEP-BCA Spill Number H-1229-01.
10.0 REFERENCES

WEBSITE REFERENCES